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Dangers during developing

In real project we do not know exactly:

fix approach requirements is changed 

fixed approach doesn’t work 

some operation didn’t work 
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Solution overview (for wide range CV tasks)
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● MobileNet v1,2,3
● BlazePose
● MobileDet
● MNASNet
● ...
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Solution overview (for wide range CV tasks)

320x320x3
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20x20x256

40x40x128

80x80x64

Task output

Backbone

Head

● MobileNet v1,2,3
● BlazePose
● MobileDet
● MNASNet
● ...

no miracles

for fixed accuracy
the speed is 
almost the same

for fixed accuracy on MS COCO mAP = 22
MNASNet has 2.5x less FLOPS then Mobile v1.
But inference is almost the same because of 3x more 
layers ⇒ memory transfer time ↑ 
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Input resolution
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...
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Task output

Backbone

Head

low resolution input width, height x 2

speed 4x ↓ memory 4x ↑
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Model size trick
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strides 2

requirement: small model size (f.e. 1Mb) 
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Model size trick
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strides 2

requirement: small model size (f.e. 1Mb) 

stride = 1, filters 2x ↓ ● model size 4x ↓ 
● accuracy a bit ↓
● the same speed 
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strides 2

requirement: small model size (f.e. 1Mb) 

stride = 1, filters 2x ↓ ● model size 4x ↓ 
● accuracy a bit ↓
● the same speed 

MobileNet v.2 backbone + CenterNet 
Object Detector model size = 16 Mb 
COCO mAP = 21.1

stride = 1, filters 2x ↓

model size = 4 Mb, COCO mAP = 20.4

quantization to uint8

model size = 1 Mb, COCO mAP = 19.7
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Connection between backbone and head
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Task output
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connection between backbone 
and head ⇒ accuracy ↑
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Deformable and transpose convolution
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Upsampling: avoid deformable and transpose conv
Just use bilinear interpolation + separable conv

Deformable and transpose conv:
● often do not work on device
● very slow for real-time on device
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Task output
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Task output
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Task specific output for 
wide range of problem

CV problems

Object Detection

Segmentation

Pose Estimation

Tracker

Depth Estimation

Multi-task

● accuracy ↑
● speed ↑
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Task Output : Object Detector
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heatmap

image

quantitive 
parameters

● box width
● box height
● angle
● age
● sex
● ...
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heatmap quantitive 
parameters

focal loss mean square error



2021 Samsung R&D Institute Ukraine. All rights reserved

Task Output : Pose Estimation
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image

...
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focal loss
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Task Output : Semantic segmentation
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foregroundbackground

cross-entropy loss

N masks
for N classes
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Segmentation + Object Detector multi-task
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Task output

heatmap box width, height masks

focal loss mean square error cross-entropy loss
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Segmentation + Object Detector multi-task results
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mAP mIOU inference (ms)

segm only - 18.6

OD only 21.1 - 17 ms 

OD + segm 22.0 19.1 19 ms

MobileNet v2 backbone, device : Samsung S10 Exynos

MS COCO 
80 classes 

Face part segm:
detect head + segm
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Segmentation + Object Detector multi-task results
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MobileNet v2 backbone, device : Samsung S10 Exynos

Nikita Dvornik et al “BlitzNet: a real time ...”, 2017

Kaiming He et al “Mask R-CNN”, 2017

segm+ OD gives better 
accuracy than OD alone

mAP mIOU inference (ms)

segm only - 18.6

OD only 21.1 - 17 ms 

OD + segm 22.0 19.1 19 ms
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Segmentation and pose estimation result
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MobileNet v2 backbone, device : Samsung S10 Exynos – 17 ms for PE and segm, 10 ms for lite OD

Detect head + segm face partsPose Estimation, mAP = 65.7 on MS COCO
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ImageNet pre-train

30

Loss landscape
for random weights

random
init Loss landscape

for ImageNet weights
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ImageNet pre-train
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Loss landscape
for random weights

random
init Loss landscape

for ImageNet weights

● Train each non-standard 
backbone on ImageNet each time

● we can use only small learning 
rate ⇒ sharp local minima
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ImageNet pre-train
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Loss landscape
for random weights

random
init Loss landscape

for ImageNet weights Better optimizer

big batch per gpu + batch norm layers

long warm-up for large learning rate

Rui Zhu etc “ScratchDet: Training …”, 2019

the same accuracy 
as pre-trained

Leslie Smith “A Disciplined Approach …”, 2018
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ImageNet pre-train
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Better optimizer

big batch per gpu + batch norm layers

long warm-up for large learning rate

Rui Zhu etc “ScratchDet: Training …”, 2019

Leslie Smith “A Disciplined Approach …”, 2018

without pre-train

training
time ↓ ↓

accuracy ↑
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Sharp vs Flat local minima
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Shirish Keskar et al. “On Large-Batch Training for Deep Learning…” , 2017.
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Learning rate schedule: common approach
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iter

10x

lr

10x

 n epoch patience
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Learning rate schedule: common approach
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iter

10x

lr

10x

optimal maximum learning rate
 n epoch patience

patience epoch for each interval
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Optimizers: literature analysis
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● Leslie Smith “A Disciplined Approach To Neural Network Hyper-Parameters: Part1 - Learning Rate, Batch 
Size, Momentum and weight decay “, 2018

● Leslie Smith “Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates”, 
2017

● Mark Schmidt and Nicolas Le Roux. “Fast convergence of stochastic gradient descent under a strong growth 
condition”.

● Yuanzhi Li, et al  “Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training 
Neural Networks”

● Rui Zhu, et al “ScratchDet: Training Single-Shot Object Detectors from Scratch”
● Leslie N. Smith “Cyclical Learning Rates for Training Neural Networks”
● Shirish Keskar et al. “On Large-Batch Training for Deep Learning…” , 2017.

1) increase learning rate as much as possible
2) get the best on plateau
3) decrease learning rate for small accuracy increment  
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Learning rate schedule (LRFinder)

38

1) increase learning rate as much as possible
2) get the best on plateau
3) decrease learning rate for small accuracy increment  

lr

step

start from 0

better loss :  lr↑↑
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Learning rate schedule (LRFinder)
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1) increase learning rate as much as possible
2) get the best on plateau
3) decrease learning rate for small accuracy increment  

lr

step

start from 0

better loss :  lr↑↑

worse loss : load 
backup, lr rate↑

better loss : lr↑
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Learning rate schedule (LRFinder)
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1) increase learning rate as much as possible
2) get the best on plateau
3) decrease learning rate for small accuracy increment  

lr

step

start from 0

better loss :  lr↑↑

worse loss : load 
backup, lr rate↑

better loss : lr↑

worse loss : load 
backup, lr fixed plateau with n epoch patience
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Learning rate schedule (LRFinder)
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1) increase learning rate as much as possible
2) get the best on plateau
3) decrease learning rate for small accuracy increment  

lr

step

start from 0

better loss :  lr↑↑

worse loss : load 
backup, lr rate↑

better loss : lr↑

worse loss : load 
backup, lr fixed plateau with n epoch patience

lr↓ if worse loss
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Learning rate schedule (LRFinder)
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lr

step

start from 0

better loss :  lr↑↑

better loss : lr↑

plateau with n epoch patience

lr↓ if worse loss

MS COCO Mobile v2  Object Detector (17 ms on S10 Exynos)
common lr approach : mAP = 21.1
using LRFinder : mAP = 22.8
using LRFinder + multi-task: mAP = 23.7 

worse loss : load 
backup, lr rate↑
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Conclusions
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● It is better to write your own detector

● Real-time mobile NN could has only low-resolution input

● Model size, accuracy and speed could be tuned

● There is a trick to greatly reduce model size with only a bit accuracy drop

● It is better to avoid transformed and transpose convolutions

● Flat extremums gives higher accuracy on test set

● Large batch size and learning rate lead to flat minima

● It is possible to quickly and simply add CV new task 


