Object detection, segmentation and pose estimation for mobile devices

Vitaliy Bulygin, Samsung R&D Institute

Solution overview (for wide range CV tasks)

Solution overview (for wide range CV tasks)

Solution overview (for wide range CV tasks)

Input resolution

Model size trick

Model size trick

Model size trick

Connection between backbone and head

Deformable and transpose convolution

Task output

Task output

Task Output : Object Detector

Task Output : Object Detector

Task Output : Pose Estimation

Task Output : Semantic segmentation

Segmentation + Object Detector multi-task

Segmentation + Object Detector multi-task results

MobileNet v2 backbone, device : Samsung S10 Exynos

	mAP	mIOU	inference (ms)
segm only	_	18.6	
OD only	21.1	-	17 ms
OD + segm	22.0	19.1	19 ms

MS COCO 80 classes

Face part segm: detect head + segm

Segmentation + Object Detector multi-task results

MobileNet v2 backbone, device : Samsung S10 Exynos				
	mAP	mIOU	inference (ms)	
segm only	-	18.6		
OD only	21.1	-	$17 \mathrm{ms}$	
OD + segm	22.0	19.1	19 ms	

Nikita Dvornik et al "BlitzNet: a real time ...", 2017

Kaiming He et al "Mask R-CNN", 2017

segm+ OD gives better accuracy than OD alone

Segmentation and pose estimation result

MobileNet v2 backbone, device : Samsung S10 Exynos - 17 ms for PE and segm, 10 ms for lite OD

ImageNet pre-train

ImageNet pre-train

big batch per gpu + batch norm layers Rui Zhu etc "ScratchDet: Training ...", 2019 long warm-up for large learning rate Leslie Smith "A Disciplined Approach ...", 2018 Better optimizer without pre-train training accuracy ↑ time↓↓

Sharp vs Flat local minima

Learning rate schedule: common approach

Learning rate schedule: common approach

Optimizers: literature analysis

- 1) increase learning rate as much as possible
- 2) get the best on plateau
- 3) decrease learning rate for small accuracy increment

- Leslie Smith "Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates", 2017
- Mark Schmidt and Nicolas Le Roux. "Fast convergence of stochastic gradient descent under a strong growth condition".
- Yuanzhi Li, et al "Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training Neural Networks"
- Rui Zhu, et al "ScratchDet: Training Single-Shot Object Detectors from Scratch"
- Leslie N. Smith "Cyclical Learning Rates for Training Neural Networks"
- Shirish Keskar et al. "On Large-Batch Training for Deep Learning...", 2017.

- 2)get the best on plateau
- decrease learning rate for small accuracy increment

step

Conclusions

- It is better to write your own detector
- Real-time mobile NN could has only low-resolution input
- Model size, accuracy and speed could be tuned
- There is a trick to greatly reduce model size with only a bit accuracy drop
- It is better to avoid transformed and transpose convolutions
- Flat extremums gives higher accuracy on test set
- Large batch size and learning rate lead to flat minima
- It is possible to quickly and simply add CV new task