

Deep Reinforcement Learning (DRL) - a new Al-disrupt

Serhiy Protsenko | Lead data scientist

Agenda

- 1. About Scalarr
- 2. Reinforcement Learning development and accomplishments
- 3. Reinforcement Learning concept and technical details
- 4. Traditional Playtesting vs Scalarr GameAl
- 5. Free Design Partnership with Scalarr

About Us

Scalarr harnesses the power of AI to create progress and accelerate your revenue

Our Al-driven solutions:

Gaming:

GameAl

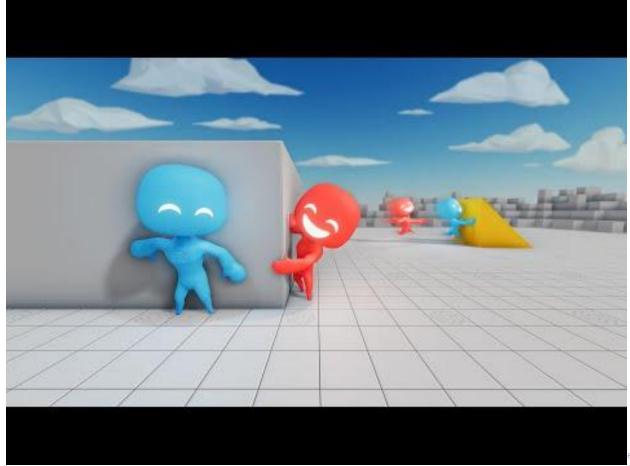
Edge Computing:

Al Edge Labs

Reinforcement Learning - development and accomplishments

I Reinforcement Learning

| Reinforcement Learning



I Reinforcement Learning

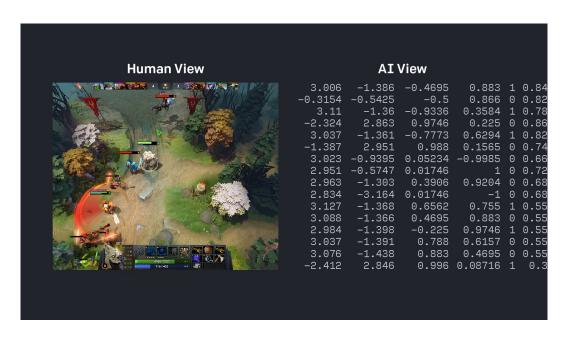
2016

AlphaGo

Source: https://deepmind.com/research/case-studies/alphago-the-story-so-far

2019

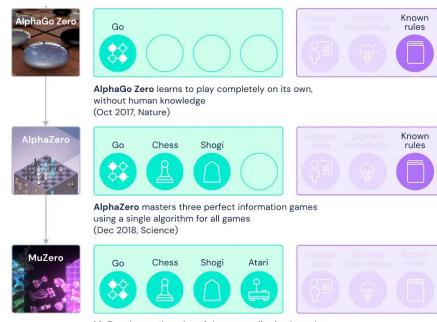
OpenAl Five Defeats Dota 2 World Champions



Source: https://openai.com/blog/openai-five-defeats-dota-2-world-champions/

2020

MuZero: Mastering Go, chess, shogi and Atari without rules



MuZero learns the rules of the game, allowing it to also master environments with unknown dynamics. (Dec 2020, Nature)

Source: https://deepmind.com/blog/article/muzero-mastering-go-chess-shogi-and-atari-without-rules

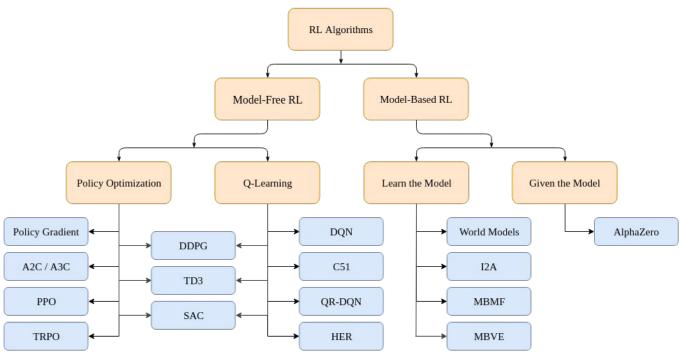
2021

Open-Ended Learning Leads to Generally Capable Agents

Reinforcement Learning - concept and technical details

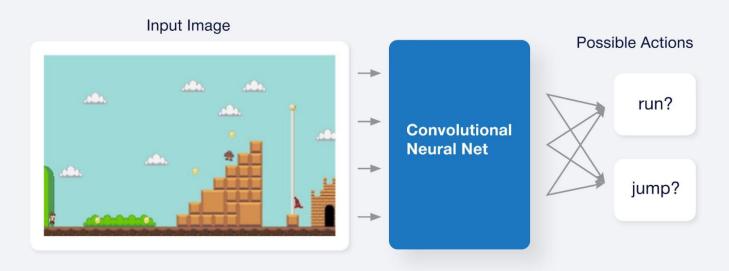
Hierarchical RL What type of RL Offline RL Off-Policy RL can we use? **Inverse RL On-Policy RL Model-Free RL Meta-Learning RL** Model-Based RL **GAIL** Without Model RL With Model RL **T**ransfer **Imitation Learning** Learning and **Multi-Agent** Multi-Task Reinforcement **Learning RL** Learning (MARL)

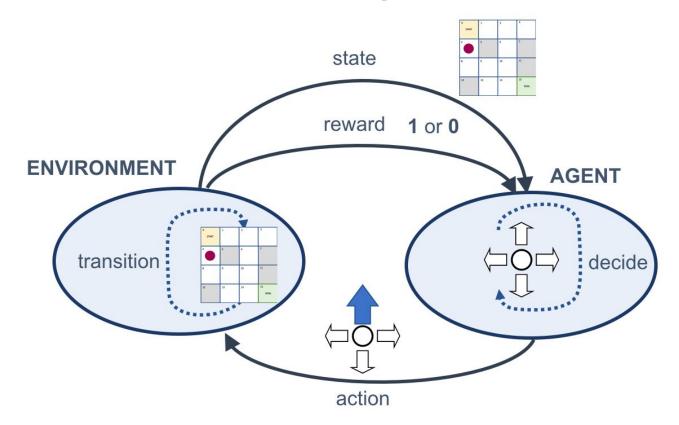
What models are available?



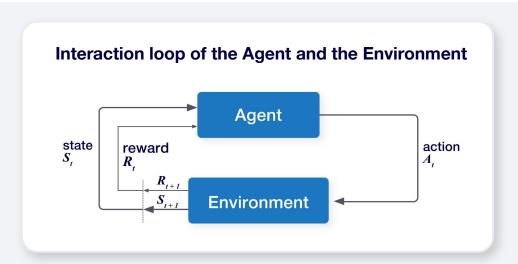
Source: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Convolutional Agent



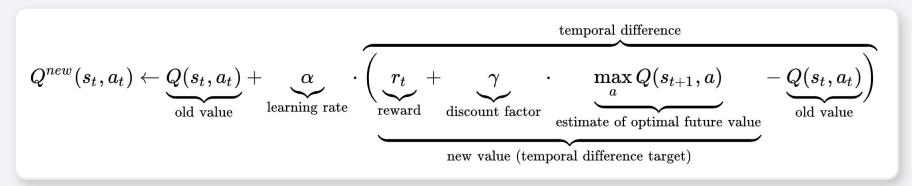


- s_t state
- a₊ action
- $r_{+} = r(s_{+}, a_{+})$ reward
- $R = \sum_{t} \gamma^{t} r_{t}$ return
- γ discount factor
- $V(s) = E(R \mid s_0 = s)$ value
- $Q(s, a) = E(R | s_0 = s, a_0 = a) Q$ -value
- A(s, a) = Q(s, a) V(s) advantage
- $\pi(s, a)$ policy
- $\mathbf{\tau} = (\mathbf{s}_0, \mathbf{a}_0, \mathbf{r}_0, \mathbf{s}_1, ...)$ trajectory or episode

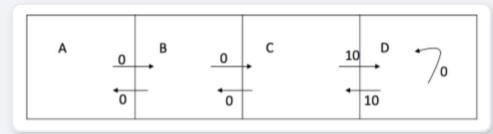


Single-Agent RL: Q-learning (Watkins and Dayan, 1992)

- Learn Q-values in each state
- Use Temporal Difference learning to update Q-values



- Act by choosing the action that maximizes Q-value, sometimes deviating for exploration

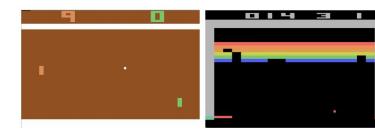


Single-Agent RL: Deep Q-Networks (Mnih et al., 2013)

- Approximate Q-values in each state with a Neural Network
- Use Temporal Difference learning to update Networks' weights

$$L_Q = (r_t + \gamma max_{a_{t+1}}Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))^2$$

Store transitions in Experience Replay (ER) buffer to reuse later



Single-Agent RL: Advantage Actor-Critic (Mnih et al., 2016)

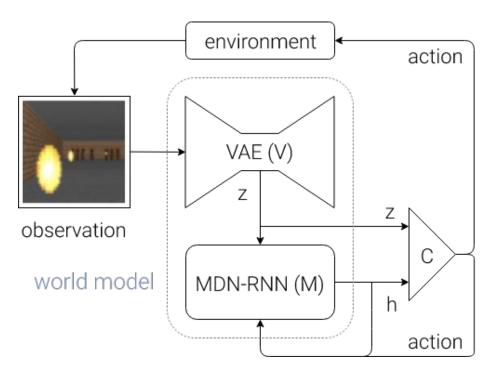
- Train two networks: Actor and Critic
- Actor predicts agent's policy $\pi(s, a)$
- Critic predicts value V(s) to assist Actor's training
- May or may not use Experience Replay
- Train either via Temporal Difference (left) or Monte-Carlo (right)

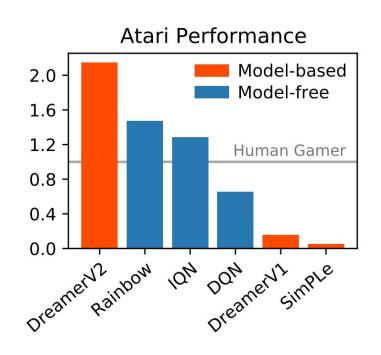
$$L_{critic} = (r_t + \gamma V_{t+1} - V_t)^2$$

$$L_{actor} = \log \pi (s_t, a_t) * (r_t + \gamma V_{t+1} - V_t)$$

$$L_{actor} = \log \pi (s_t, a_t) * (R_t - V_t)$$

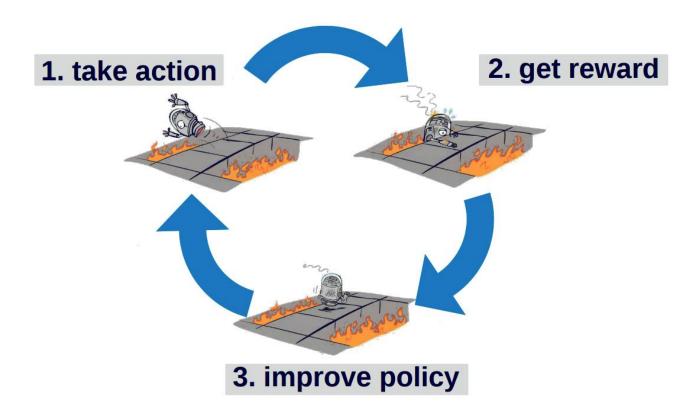
World models, Dreamer, Dreamer V2 (DeepMind 2021)



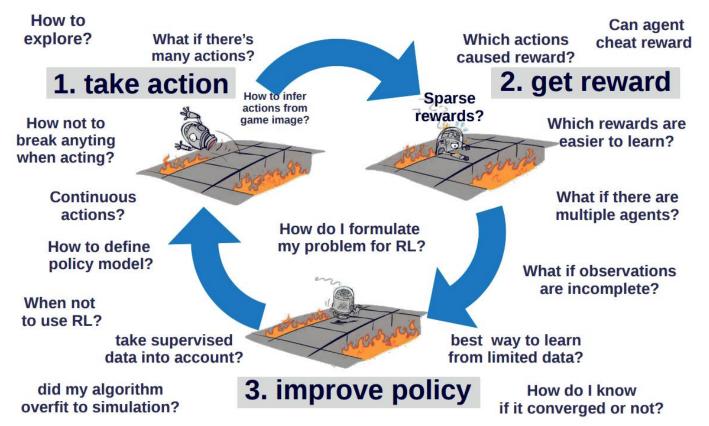


Source: https://ai.googleblog.com/2021/02/mastering-atari-with-discrete-world.html

Reinforcement learning is easy!

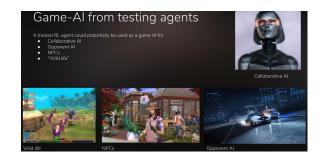


Reinforcement learning is challenging!



Traditional Playtesting vs Scalarr GameAl

World Game Industry Leaders and RL



I Game Testing & Level Design Challenges

Gamers constantly demand new content (new levels)

For Match-3 games, it's nearly 100 new levels every two weeks!

Game/Level designers spend 65%+ of their work time on playtesting & balancing,

Current method of testing is time-consuming & inaccurate

In most cases the designers themselves are testing the game

Badly balanced game levels negatively impact *Retention* and *Monetization*

WHY REINFORCEMENT LEARNING?

Accuracy

Remove the biases that come with human testing & eliminate the need to test your levels internally

Speed

Drastically cut the testing period. Our Al can test a game/level in a couple hours compared to weeks

Balance

Balance your game/level using Game Al's outputs. i.e. Fail / Win rate, # of attempts before winning, etc.

Engage

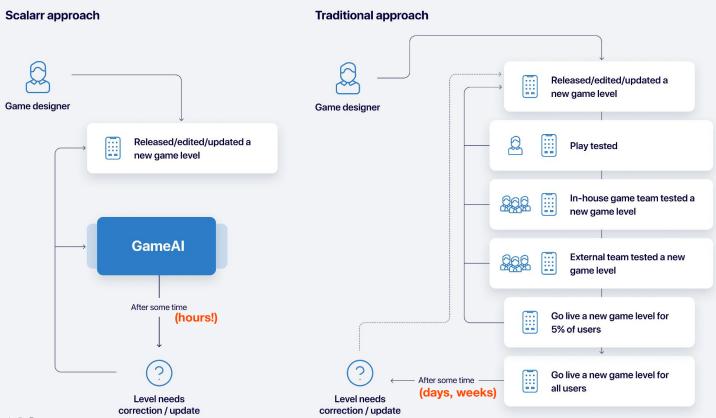
A properly balanced game will keep your users engaged and excited!

Monetize

More engaged users that feel challenged will spend more time and money \$\$\$

© All Rights Reserved. Scalarr Inc., 2021

What is GameAI?



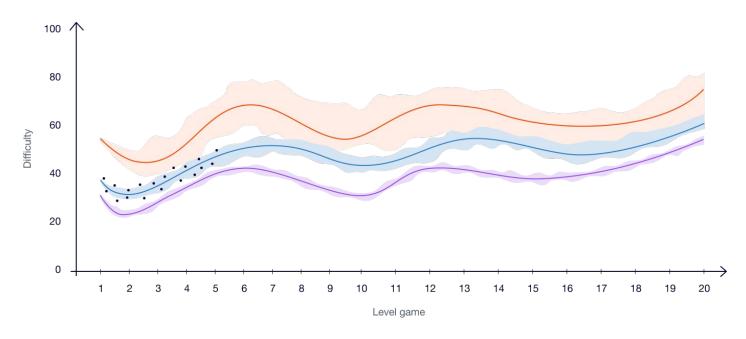
RL Avatars playtesting - output data (Match-3 Example)

Data available for newly loaded levels and every RL Avatar (total and average):

- Fail Rate / Win Rate
- # of attempts lost before winning
- Scatter of the results around the avg, depending on random factors
- # Moves spent / left
- Boosters & power-ups use rate
- # of collected / used field bombs
- Other custom metrics

ID	Level	Status	Fail%	LbW	Moves	Boosters	PwrUps
29690	Level C1 ▼	Not Started	-	-	-	-	-
532X3	Level C2 ▼	Training	_	_	_	-	-
190A5	Level C3 ▶	Training	15.32%	2.37	16/20	0.73%	12.16
	Agent #31	Done	15.34%	2.39	16/20	1.18%	11.06

Difficulty Assessment

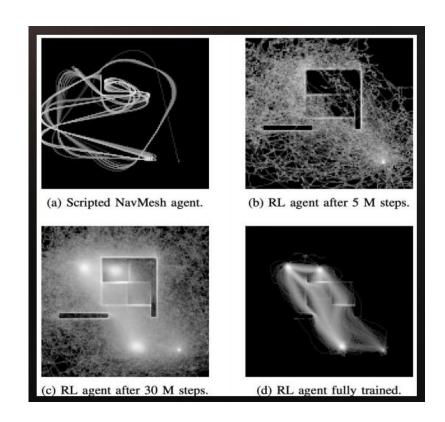


- Newbie agent RL agent 10M step
- Skilled agent RL agent 30M+ step

- **Expert agent** RL agent 20M step
 - Real gamers

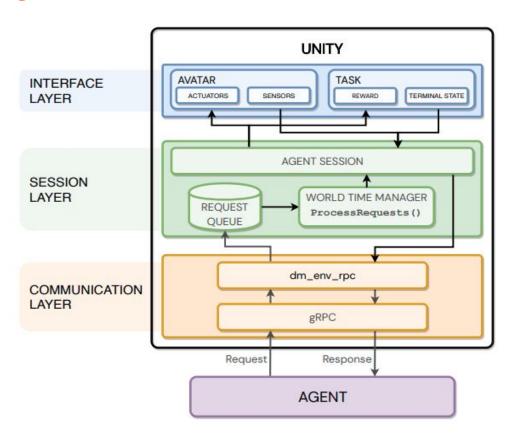
RL - What Components are Needed?

- Integration components (SDK, etc.) & infrastructures;
- RL Agents (set of models);
- Analytical tool;
- etc.

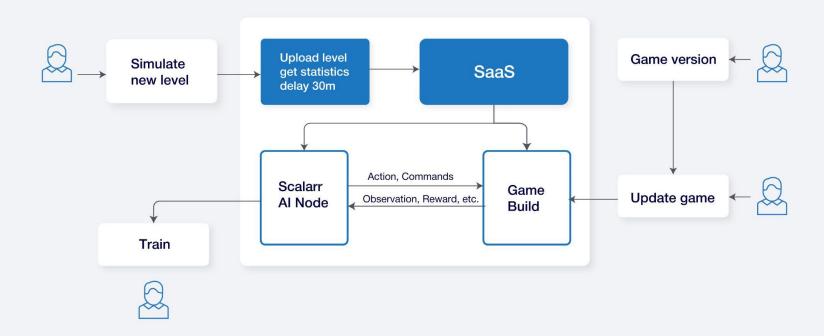


I Integration - Free of charge

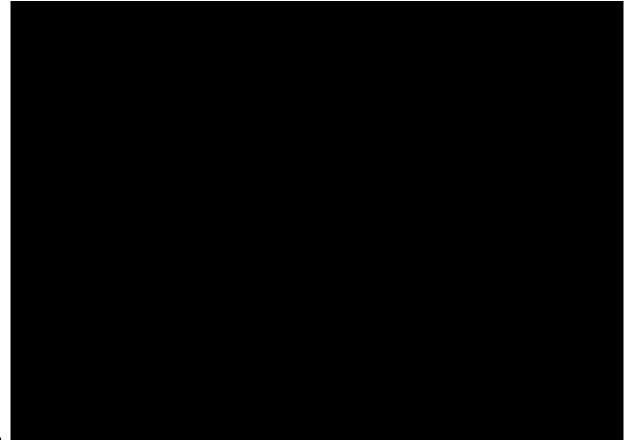
- SDK aka Unity Plugin
- 7 days for full integration (approximately)



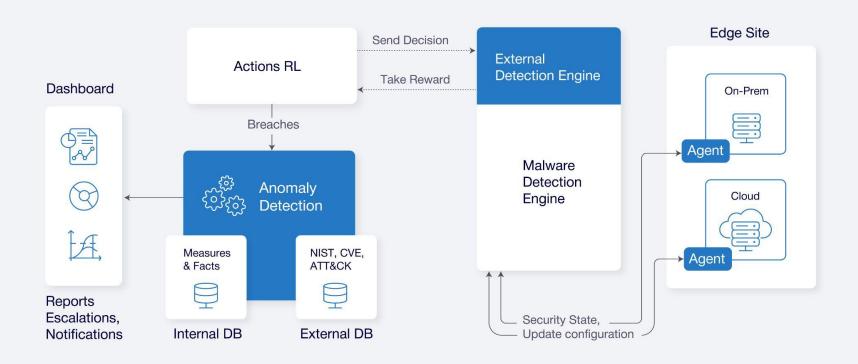
SaaS

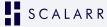


Demo - RL Avatar plays Match-3 game like a Human



Scalarr Edge Labs Al





Contact us today to progress tomorrow

Serhiy Protsenko | Lead data scientist

scalarr.ai serhiy.protsenko@scalarr.io