Model-assisted labeling

How to save time and money on data annotation

Olga Petrova, Al Product Manager @ Scaleway

- Who I am:
 - Product Manager for AI PaaS at Scaleway

- Who I am:
 - Product Manager for AI PaaS at Scaleway

• Machine Learning engineer at Scaleway

- Who I am:
 - Product Manager for AI PaaS at Scaleway

- Machine Learning engineer at Scaleway
- Quantum physicist at École Normale Supérieure, the Max Planck
 Institute, Johns Hopkins University

- Who I am:
 - Product Manager for AI PaaS at Scaleway

- Machine Learning engineer at Scaleway
- Quantum physicist at École Normale Supérieure, the Max Planck

Institute, Johns Hopkins University

www.olgapaints.net

Outline

1. Data annotation: why and how

Supervised vs. unsupervised ML, structured vs. unstructured data

- 2. Getting away with less (labeled) data Transfer learning Semi-supervised learning
- Model-assisted labeling
 Pre-labeling / Auto-labeling
 Active learning

Outline

1. Data annotation: why and how

Supervised vs. unsupervised ML, structured vs. unstructured data

Getting away with less (labeled) data Transfer learning Semi-supervised learning

Model-assisted labeling
 Pre-labeling / Auto-labeling
 Active learning

SUPERVISED ML

- For every input, there is an output
- Examples:
 - \circ Classification: image \rightarrow label;
 - *machine translation*: phrase in L1 \rightarrow phrase in L2;
 - *regression*: vector \rightarrow value
- Training data is labeled: (input, output) pairs

SUPERVISED ML

- For every input, there is an output
- Examples:
 - \circ Classification: image \rightarrow label;
 - *machine translation*: phrase in L1 \rightarrow phrase in L2;
 - *regression*: vector \rightarrow value
- Training data is labeled: (input, output) pairs

UNSUPERVISED ML

- *Clustering*: arranging data points in groups
 - Input data points only
- *Generative modeling*: generate new data points from the same distribution
 - Input = noise vector, output is a new data point
- Training data is unlabeled: inputs only

SUPERVISED ML

- For every input, there is an output
- Examples:
 - \circ Classification: image \rightarrow label;
 - *machine translation*: phrase in L1 \rightarrow phrase in L2;
 - *regression*: vector \rightarrow value
- Training data is labeled: (input, output) pairs

SEMI-SUPERVISED ML

- Supervised ML tasks
- Combination of labeled and unlabeled data
- More on this later

UNSUPERVISED ML

- *Clustering*: arranging data points in groups
 - Input data points only
- *Generative modeling*: generate new data points from the same distribution
 - Input = noise vector, output is a new data point
- Training data is unlabeled: inputs only

SUPERVISED ML

- For every input, there is an output
- Examples:
 - \circ Classification: image \rightarrow label;
 - *machine translation*: phrase in L1 \rightarrow phrase in L2;
 - *regression*: vector \rightarrow value
- Training data is labeled: (input, output) pairs

SEMI-SUPERVISED ML

- Supervised ML tasks
- Combination of labeled and unlabeled data
- More on this later

UNSUPERVISED ML

- *Clustering*: arranging data points in groups
 - Input data points only
- *Generative modeling*: generate new data points from the same distribution
 - Input = noise vector, output is a new data point
- Training data is unlabeled: inputs only

SELF-SUPERVISED ML

- For every input, there is an auto-generated output
- E.g. *autoencoder*: input = output
- Common in NLP: predictive language modeling

SUPERVISED ML

- For every input, there is an output
- Examples:
 - Classification: image \rightarrow label;
 - *machine translation*: phrase in L1 \rightarrow phrase in L2;
 - *regression*: vector \rightarrow value
- Training data is labeled: (input, output) pairs

SEMI-SUPERVISED ML

- Supervised ML tasks
- Combination of labeled and unlabeled data
- More on this later

UNSUPERVISED ML

- *Clustering*: arranging data points in groups
 - Input data points only
- *Generative modeling*: generate new data points from the same distribution
 - Input = noise vector, output is a new data point
- Training data is unlabeled: inputs only

SELF-SUPERVISED ML

- For every input, there is an auto-generated output
- E.g. *autoencoder*: input = output
- Common in NLP: predictive language modeling

Structured vs. Unstructured data

STRUCTURED DATA

• Tabulated data

ID	Age	Gender	Weight	Diagnosis
264264	27	0	72	1
908696	61	1	80	0

• No manual annotation

Structured vs. Unstructured data

STRUCTURED DATA

• Tabulated data

ID	Age	Gender	Weight	Diagnosis
264264	27	0	72	1
908696	61	1	80	0

• No manual annotation

UNSTRUCTURED DATA

- Images, videos, text, audio, ...
- Data that is easy to process for humans
 - Image recognition
 - Natural language understanding
 - Etc
- Difficult to automate without ML
- Annotations assigned by hand

Structured vs. Unstructured data

UNSTRUCTURED DATA

- Images, videos, text, audio, ...
- Data that is easy to process for humans
 - Image recognition
 - Natural language understanding
 - Etc
- Difficult to automate without ML
- Annotations assigned by hand

MANUAL ANNOTATION CHALLENGES

- Domain knowledge
- Difficult to scale, time consuming, expensive
- Multiple annotators per data point
- NLP: language barrier

Outline

1. Data annotation: why and how Supervised vs. unsupervised ML, structured vs. unstructured data

- 2. Getting away with less (labeled) data Transfer learning Semi-supervised learning
- Model-assisted labeling
 Pre-labeling / Auto-labeling
 Active learning

Transfer Learning

COMPUTER VISION

- Common starting point: model that has been trained on the ImageNet
- Replace outer layer & fine-tune on your data

Transfer Learning

COMPUTER VISION

- Common starting point: model that has been trained on the ImageNet
- Replace outer layer & fine-tune on your data

NLP

- Pre-trained self-supervised models
- Word embeddings (e.g. Word2Vec)
- Contextual word embeddings (e.g. BERT)

Transfer Learning

COMPUTER VISION

- Common starting point: model that has been trained on the ImageNet
- Replace outer layer & fine-tune on your data

NLP

- Pre-trained self-supervised models
- Word embeddings (e.g. Word2Vec)
- Contextual word embeddings (e.g. BERT)

You can get away with a smaller training set by using a pre-trained model

- Goal: use unlabeled data to boost the performance of supervised models
- Binary classification example: **blues** vs. **oranges**
- Draw a decision boundary between classes ignoring the unlabeled points

- Goal: use unlabeled data to boost the performance of supervised models
- Binary classification example: **blues** vs. **oranges**
- Draw a decision boundary between classes ignoring the unlabeled points

- Goal: use unlabeled data to boost the performance of supervised models
- Binary classification example: **blues** vs. **oranges**
- Draw a decision boundary between classes ignoring the unlabeled points
- What if we take the unlabeled points into account?
- The data can be seen to form two rings

- Goal: use unlabeled data to boost the performance of supervised models
- Binary classification example: **blues** vs. **oranges**
- Draw a decision boundary between classes ignoring the unlabeled points
- What if we take the unlabeled points into account?
- The data can be seen to form two rings
- Using labeled points, we can draw the correct decision boundary now

- Goal: use unlabeled data to boost the performance of supervised models
- Binary classification example: **blues** vs. **oranges**
- Draw a decision boundary between classes ignoring the unlabeled points
- What if we take the unlabeled points into account?
- The data can be seen to form two rings
- Using labeled points, we can draw the correct decision boundary now
- Unlabeled points give information about the distribution of the data
- Labeled points are used to assign class labels

Outline

1. Data annotation: why and how Supervised vs. unsupervised ML, structured vs. unstructured data

- Getting away with less (labeled) data Transfer learning Semi-supervised learning
- Model-assisted labeling
 Pre-labeling / Auto-labeling
 Active learning

Imagine the following use case:

- You have an online marketplace and you want to classify users' postings with ML (CV and/or NLP)
- You gather and label a huge training dataset and train a classifier

Imagine the following use case:

- You have an online marketplace and you want to classify users' postings with ML (CV and/or NLP)
- You gather and label a huge training dataset and train a classifier
- But then:
 - A pandemic starts
 - People start selling and buying cute DIY face masks
 - Your model was not trained to recognize them

Imagine the following use case:

- You have an online marketplace and you want to classify users' postings with ML (CV and/or NLP)
- You gather and label a huge training dataset and train a classifier
- But then:
 - A pandemic starts
 - People start selling and buying cute DIY face masks
 - Your model was not trained to recognize them
- An example of *data drift*
- You need to update your model continuously (fine-tune on new data)

TRADITIONAL WAY

- Every week/month:
 - randomly choose 5000 new images
 - \circ annotate them
 - evaluate model's performance
 - \circ fine-tune
- Out of 5000, maybe 5% are new data (e.g. face masks)
- The other 4750 labels brought us no value
- How can we avoid this?

TRADITIONAL WAY

- Every week/month:
 - \circ randomly choose 5000 new images
 - \circ annotate them
 - evaluate model's performance
 - \circ fine-tune
- Out of 5000, maybe 5% are new data (e.g. face masks)
- The other 4750 labels brought us no value
- How can we avoid this?

SMART WAY

- Every week/month:
 - randomly choose 5000 new images
 - get predictions from existing model
 - annotate whatever the model did not recognize
 - fine-tune
- In this example, you only need to label 275 images

TRADITIONAL WAY

- Every week/month:
 - randomly choose 5000 new images
 - \circ annotate them
 - evaluate model's performance
 - \circ fine-tune
- Out of 5000, maybe 5% are new data (e.g. face masks)
- The other 4750 labels brought us no value
- How can we avoid this?

SMART WAY

- Every week/month:
 - randomly choose 5000 new images
 - get predictions from existing model
 - annotate whatever the model did not recognize
 - fine-tune
- In this example, you only need to label 275 images
- Several options:
 - \circ $\,$ Choose the confidence score threshold $\,$
 - \circ $\,$ Discard or auto-label the recognized images
 - Send high confidence predictions for validation

Active Learning

- Active learning: a type of semi-supervised learning
- Goal: select the best subset of data to have labeled
- Not all data is equally useful for model training

Active Learning

- Active learning: a type of semi-supervised learning
- Goal: select the best subset of data to have labeled
- Not all data is equally useful for model training

Active Learning

- Active learning: a type of semi-supervised learning
- Goal: select the best subset of data to have labeled
- Not all data is equally useful for model training

- Examples of suboptimal labeling choices:
 - groups of similar images

• noise: out-of-distribution, not representative, etc

Let's say we start with an unlabeled dataset **U**

0. If you don't have a (pre)trained model, choose a small subset of data, call it *L*, label it and train the initial model

- If you don't have a (pre)trained model, choose a small subset of data, call it L, label it and train the initial model
- 1. Get model predictions for **U**
- 2. Using a *query strategy*, choose a subset of data to be labeled next

- 0. If you don't have a (pre)trained model, choose a small subset of data, call it *L*, label it and train the initial model
- 1. Get model predictions for **U**
- 2. Using a *query strategy*, choose a subset of data to be labeled next
- 3. Label the subset and move it from *U* to *L*
- 4. Re-train the model on *L*

- If you don't have a (pre)trained model, choose a small subset of data, call it *L*, label it and train the initial model
- 1. Get model predictions for *U*
- 2. Using a *query strategy*, choose a subset of data to be labeled next
- 3. Label the subset and move it from *U* to *L*
- 4. Re-train the model on *L*
- 5. Go back to Step 1 ____

- 0. If you don't have a (pre)trained model, choose a small subset of data, call it *L*, label it and train the initial model
- 1. Get model predictions for *U*
- 2. Using a *query strategy*, choose a subset of data to be labeled next
- 3. Label the subset and move it from *U* to *L*
- 4. Re-train the model on L
- 5. Go back to Step 1
- The idea: at each loop iteration, you label the data that the model can learn from the most
- What is a **query strategy**?

LEAST CONFIDENCE

• Choose samples that the model is least sure about

(= has the most to learn from)

LEAST CONFIDENCE

• Choose samples that the model is least sure about

(= has the most to learn from)

Example: 4 classes (basset, chow-chow, mini poodle, standard poodle)

LEAST CONFIDENCE

Choose samples that the model is least sure about
 (= has the most to learn from)

Example: 4 classes (basset, chow-chow, mini postandard poodle)

le,

LEAST CONFIDENCE

- Choose samples that the model is least sure about
 (= has the most to learn from)
- Issue: picks out all the outliers
 - Choose medium, rather than lowest, confidence
- Example: 4 classes (basset, chow-chow, mini poodle, standard poodle)

LEAST CONFIDENCE

- Choose samples that the model is least sure about (= has the most to learn from)
- Issue: picks out all the outliers
 - Choose medium, rather than lowest, confidence
- Example: 4 classes (basset, chow-chow, mini poodle, standard poodle)

MARGIN SAMPLING

 Choose samples with the smallest difference between two top choices

LEAST CONFIDENCE

- Choose samples that the model is least sure about (= has the most to learn from)
- Issue: picks out all the outliers
 - Choose medium, rather than lowest, confidence
- Example: 4 classes (basset, chow-chow, mini poodle, standard poodle)

MARGIN SAMPLING

• Choose samples with the smallest difference

between two top choices

LEAST CONFIDENCE

- Choose samples that the model is least sure about (= has the most to learn from)
- Issue: picks out all the outliers
 - Choose medium, rather than lowest, confidence
- Example: 4 classes (basset, chow-chow, mini poodle, standard poodle)

MARGIN SAMPLING

- Choose samples with the smallest difference between two top choices
- Good for finding decision boundaries between classes
- Binary classification: least confidence = margin sampling

blog.scaleway.com/active-learning-some-datapoints-are-more-equal-than-others/

blog.scaleway.com/active-learning-pytorch/

Quick Summary

When on a limited annotation budget, you should:

- Use transfer learning whenever available
- Pre-labeling when you are fine-tuning an existing model
- Active learning if you are training a model from scratch

Quick Summary

When on a limited annotation budget, you should:

- Use transfer learning whenever available
- Pre-labeling when you are fine-tuning an existing model
- Active learning if you are training a model from scratch

Smart Labeling by Scaleway

- Computer Vision annotation platform based on CVAT (Computer Vision Annotation Tool by Intel)
- Currently in free private Beta
- Free Scaleway object storage for up to 75G
- To sign up for the Beta program, email me at <u>opetrova@scaleway.com</u>