Model-assisted labeling

How to save time and money on data annotation
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I ' text o, ...
e Tabulated data e Images, videos, text, audio,

‘ e Data that is easy to process for humans
ID Age Gender Weight Diagnosis o Image reCOgnItlon

o Natural language understanding
264264 27 0 72 1 o EtC
908696 o1 1 8 0 e Difficult to automate without ML
e Annotations assigned by hand

e No manual annotation




Structured vs. Unstructured data

Domain knowledge
Difficult to scale, time consuming, expensive
Multiple annotators per data point

NLP: language barrier

Images, videos, text, audio, ...

Data that is easy to process for humans
o Image recognition
o Natural language understanding
o Etc

Difficult to automate without ML

Annotations assigned by hand
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Transfer Learning

e Common starting point: model that has been
trained on the ImageNet

e Replace outer layer & fine-tune on your data

Input data Convl Conv2 Conv3 Conv4 Conv5 FC6 FC7 FC8

13x 13 x 384  13x 13 x 384 13x 13 X 256

27x 27 X 256

55X 55 x 96

L] L] 1000
227% 227 x 3 4096 4096
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Transfer Learning

e Common starting point: model that has been
trained on the ImageNet

e Replace outer layer & fine-tune on your data

e Pre-trained self-supervised models
e \Word embeddings (e.g. Word2Vec)
e (Contextual word embeddings (e.g. BERT)

You can get away with a smaller training set by using a pre-trained model
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Semi-Supervised Learning

Goal: use unlabeled data to boost the performance of supervised models

Binary classification example: blues vs. oranges E o .
Draw a decision boundary between classes ignoring the unlabeled points @ ¢

What if we take the unlabeled points into account? >
The data can be seen to form two rings

Using labeled points, we can draw the correct decision boundary now
Unlabeled points give information about the distribution of the data

Labeled points are used to assign class labels
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3. Model-assisted labeling

Pre-labeling / Auto-labeling
Active learning
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Imagine the following use case:

e You have an online marketplace and you want to classify users’ postings with ML (CV and/or NLP)
e You gather and label a huge training dataset and train a classifier
e But then:

o A pandemic starts

o People start selling and buying cute DIY face masks

o Your model was not trained to recognize them
e An example of data drift

e You need to update your model continuously (fine-tune on new data)
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Automatic Pre-Labeling

Every week/month: e Every week/month:
o randomly choose 5000 new images o randomly choose 5000 new images
o annotate them o get predictions from existing model
o evaluate model’s performance o annotate whatever the model did not recognize
o fine-tune o fine-tune
Out of 5000, maybe 5% are new data (e.g. face e In this example, you only need to label 275 images
masks)

The other 4750 labels brought us no value .
e Several options:

id this?
How can we avoid this o Choose the confidence score threshold
o Discard or auto-label the recognized images

o Send high confidence predictions for validation
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Active Learning

Active learning: a type of semi-supervised learning
Goal: select the best subset of data to have labeled

Not all data is equally useful for model training

Examples of suboptimal labeling choices:

o groups of similar images

O
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Active Learning / Human in the Loop

Let's say we start with an unlabeled dataset U

0. If you don’t have a (pre)trained model, choose a small subset of data, call it L, label it and train the initial

model

Get model predictions for U <€
Using a query strategy, choose a subset of data to be labeled next
Label the subset and move it from Uto L

Re-train the model on L

Go back to Step 1

e The idea: at each loop iteration, you label the data that the model can learn from the most

a > w0 bh -~

e \Whatis a query strategy?
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Query Strategies for Classification

e Choose samples that the model is least sure about e (Choose samples with the smallest difference
(= has the most to learn from) between two top choices
e Issue: picks out all the outliers e (Good for finding decision boundaries between
o Choose medium, rather than lowest, confidence classes

Example: 4 classes (basset, chow-chow, mini poodle e Binary classification: least confidence = margin

sampling

standard poodle)




Query Strategies for Classification
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Learn more;

blog.scaleway.com/active-learning-some-datapoints-are-more-equal-than-others/

blog.scaleway.com/active-learning-pytorch/
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Smart Labeling by Scaleway

e Computer Vision annotation platform based on CVAT (Computer Vision Annotation Tool by Intel)
e Currently in free private Beta
e Free Scaleway object storage for up to 75G

e To sign up for the Beta program, email me at opetrova@scaleway.com
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