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Structured vs. Unstructured data
UNSTRUCTURED DATA

● Images, videos, text, audio, ...

● Data that is easy to process for humans

○ Image recognition

○ Natural language understanding

○ Etc

● Difficult to automate without ML

● Annotations assigned by hand

MANUAL ANNOTATION CHALLENGES

● Domain knowledge 

● Difficult to scale, time consuming, expensive

● Multiple annotators per data point 

● NLP: language barrier 
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● Common starting point: model that has been 
trained on the ImageNet

● Replace outer layer & fine-tune on your data

NLP

● Pre-trained self-supervised models

● Word embeddings (e.g. Word2Vec)

● Contextual word embeddings (e.g. BERT)

You can get away with a smaller training set by using a pre-trained model
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Semi-Supervised Learning
● Goal: use unlabeled data to boost the performance of supervised models

● Binary classification example: blues vs. oranges 

● Draw a decision boundary between classes ignoring the unlabeled points

● What if we take the unlabeled points into account?

● The data can be seen to form two rings

● Using labeled points, we can draw the correct decision boundary now

● Unlabeled points give information about the distribution of the data

● Labeled points are used to assign class labels
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● Every week/month: 

○ randomly choose 5000 new images

○ annotate them

○ evaluate model’s performance 

○ fine-tune

● Out of 5000, maybe 5% are new data (e.g. face 

masks)

● The other 4750 labels brought us no value

● How can we avoid this?

SMART WAY

● Every week/month: 

○ randomly choose 5000 new images

○ get predictions from existing model

○ annotate whatever the model did not recognize

○ fine-tune

● In this example, you only need to label 275 images

● Several options:

○ Choose the confidence score threshold

○ Discard or auto-label the recognized images

○ Send high confidence predictions for validation
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Active Learning
● Active learning: a type of semi-supervised learning

● Goal: select the best subset of data to have labeled

● Not all data is equally useful for model training

● Examples of suboptimal labeling choices:

○ groups of similar images

○ noise: out-of-distribution, not representative, etc
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Active Learning / Human in the Loop
Let’s say we start with an unlabeled dataset U

0. If you don’t have a (pre)trained model, choose a small subset of data, call it L, label it and train the initial 

model

1. Get model predictions for U

2. Using a query strategy, choose a subset of data to be labeled next

3. Label the subset and move it from U to L

4. Re-train the model on L

5. Go back to Step 1

● The idea: at each loop iteration, you label the data that the model can learn from the most

● What is a query strategy?
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LEAST CONFIDENCE

● Choose samples that the model is least sure about 

(= has the most to learn from)

● Issue: picks out all the outliers

○ Choose medium, rather than lowest, confidence

Example: 4 classes (basset, chow-chow, mini poodle, 

standard poodle)

MARGIN SAMPLING

● Choose samples with the smallest difference 

between two top choices

● Good for finding decision boundaries between 

classes

● Binary classification: least confidence = margin 

sampling

Query Strategies for Classification



Query Strategies for Classification

Learn more:

blog.scaleway.com/active-learning-some-datapoints-are-more-equal-than-others/

blog.scaleway.com/active-learning-pytorch/ 

https://blog.scaleway.com/active-learning-some-datapoints-are-more-equal-than-others/
https://blog.scaleway.com/active-learning-pytorch/
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● Pre-labeling when you are fine-tuning an existing model

● Active learning if you are training a model from scratch

Smart Labeling by Scaleway
● Computer Vision annotation platform based on CVAT (Computer Vision Annotation Tool by Intel)

● Currently in free private Beta

● Free Scaleway object storage for up to 75G

● To sign up for the Beta program, email me at opetrova@scaleway.com 

mailto:opetrova@scaleway.com

