HOW TO COOK EMBEDDED COMPUTER VISION. PRODUCT VS TECHNOLOGY.

Roman Storchak

CTO @ DatAI

Assumptions:

Higher customer satisfaction -> Higher sales -> Higher revenue

RETAIL USE CASES

- Traffic counting
- Queue analytics
- Sales Zone monitoring
- ••••
- • •
- Targeting Ads
- Sales terminal recommenders

LET'S BUILD TRAFFIC COUNTING

STAGE 1: OBJECT DETECTION

STAGE 1: OBJECT DETECTION / DATASET

- Object segmentation
- Recognition in context
- Superpixel stuff segmentation
- 330K images (>200K labeled)
- 1.5 million object instances
- 80 object categories
- 91 stuff categories
- 5 captions per image
- 250,000 people with keypoints

STAGE 1: OBJECT DETECTION / MODEL

Approach	Model	Comment
Traditional detectors	VJ (2001), HOG(2005)	
Two-stage detectors	R-CNN (2014), Fast RCNN, Faster RCNN	Region proposal
One-stage detector	Yolo (2016), SSD(2016), Retina-Net	NMS, Hard neg. mining

STAGE 1: OBJECT DETECTION / MODEL

+ JETSON NANO

YOLO V3 MAKES SENSE

YOLO V3 - 2 FPS

HARDWARE LIMITS AI MORE THAN SOFTWARE

STAGE 2: PLATFORM SELECTION

GOOGLE Coral edge TPUNvidia Jetson Nano / TX2

• • • •

- Intel NCS2 (Intel[®] Movidius[™] Myriad[™] X Vision Processing Unit)
- ARM (ARM NN SDK, includes MALI GPU)

• …

- Xilinx (Out of scope)
- GPU (Nvidia or AMD, out of scope)
- CPU (OpenVino, out of scope)

STACE 2: PLATFORM SELECTION / CAMERA SELECTION

- Compressed vs Uncompressed video
- Optical aberrations
- Rolling vs global shutter

STAGE 2: PLATFORM SELECTION / H.264 TO RGB CONVERSION

CPU	NXP i.MX 8M SoC (quad Cortex-A53, Cortex-M4F)
GPU	Integrated GC7000 Lite Graphics
ML accelerator	Google Edge TPU coprocessor
RAM	1 GB LPDDR4
Flash memory	8 GB eMMC

Corol beta

Tech specs

GC7000 Series	GC7000 UltraLite	GC7000 Lite
Vega Shader Cores*	8	16
Shader Clock Frequency in 28HPM	1GHz	1GHz
GFLOPS (Medium Precision)	32	64
GFLOPS (High Precision)	16	32
Texel Rate (GTexel/sec)	0.8	1.6
Vertex Rate (Gvert/sec)	0.5	1.0
OpenGL ES 3.1 Support	\checkmark	~
OpenCL 1.2 Support	~	\checkmark
Geometry Shader/Tessellation Shader	Optional	Optional

STAGE 2: PLATFORM SELECTION / H.264 TO RGB CONVERSION

- Hardware accelerated decoding rarely works off the shelf
- CPU load on google coral drops 10x (50%->5%)
- Use zero-copy when possible (Jetsons)
- Decoder output is often YUV (for example I420) or NV12
- Hardware acceleration for scaling and colour conversion

STAGE 2: PLATFORM SELECTION / HARDWARE FOR NN

- Production grade hardware rarely works with float32
- You have to decide if quantization aware training is ok for you.
- Use NN optimizations (tensorRT, openVino, ...)
- Static input tensors

STAGE 2: PLATFORM SELECTION / HARDWARE FOR NN

Object detection

MobileNet SSD v1 (COCO)

Detects the location of 90 types objects Dataset: COCO Input size: 300x300

↓ Edge TPU model

- \checkmark Labels file
- \downarrow All model files

MobileNet SSD v2 (COCO)

Detects the location of 90 types objects Dataset: COCO Input size: 300x300

- ↓ Edge TPU model
- \checkmark Labels file
- \downarrow All model files

MobileNet SSD v2 (Faces)

Detects the location of human faces Dataset: Open Images v4 Input size: 320x320 (Does not require a labels file)

- ↓ Edge TPU model
- \downarrow All model files

OH WAIT! WHICH PROBLEM ARE WE SOLVING

Beck-end & Front-end

• API for integration with client's IT infrastructure

Recent events

Someone's else tech VS **MobileNET 2+** IOU tracker + **Google Coral edge TPU**

Cutting-Edge Hardware

To achieve unparalleled accuracy, the Density DPU pairs Class 1 infrared lasers with onboard compute power for running proprietary machine learning algorithms.

Download the Datasheet

The World's Most Ad **People Counter**

Accurately count people in real tim infringing on occupant privacy

Get a Live Demo

Πœ

 \checkmark

Funding

Rounds

A \$12 000 000

Easy to install and configu

Designed for Enterp

Standard PoE+ connectiv

✓ 24/7 dedicated support

✓ Scales to 100s of devices

BARRIERS TO ENTRY

Barier	Easiness
Dataset	EASY
Model	EASY

BARRIERS TO ENTRY

Barier	Easiness
Dataset	EASY
Model	EASY
Optimization	MODERATE

WE HAVE MISSED FEW THINGS

- Legal
- Supply availability
- Manufacturing
- •QA
- Monitoring
- •Unit economy

BARRIERS TO ENTRY

Barier	Easiness
Dataset	EASY
Model	EASY
Optimization	MODERATE
Sales	Extremely difficult

Porter's Five Forces Framework

Bargaining power of suppliers

- Number of suppliers
- Size of suppliers
- Uniqueness of the service
- your Ability to substitute
- Cost of changing

Threat of new entry

- Time and cost to entry
- Economy of scale
- Specialist knowledge
- Technology protection
- Cost advantages
- Barriers to entry

Rivalry between existing competitors

Threat of Substitutes

- Substitute performance
- Cost of change

Competitor Rivalry

- Number of competitors
- quality and other differences
- Switching costs
- Customer loyalty
- Costs of leaving the market

Bargaining power of buyers

- Number of customers
- Size of each order
- Difference between competitors
- Price sensitivity
- Ability to substitute
- Cost of changing

WHEN AI CAN BE A CORE OF SUCCESSFUL PRODUCT?

Proprietary **and** unique technology

DEMAND

or

+

Proprietary dataset

Core/Context Analysis Framework

Copyright © Geoffrey A. Moore, 2005, from the book "DEALING WITH DARWIN"

Embedded AI is simple to start

And it's easy to miss core & mission critical processes

QUESTIONS?