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You’ll find out 

• What is a good pipeline

• How to process effectively input data

• How to build a train pipeline

• Why is a declarative syntax useful

• Reproducible research

• How to alter training to predictive pipeline with small efforts



Pipeline

• sequences of processing and analysis steps applied to 

data for a specific purpose

• save time on design time and coding, if you expect to 

encounter similar tasks

• simplifies deployment to production



What is a good pipeline?

• Reusable pipeline  

(applied to different tasks with minor changes)

• Structured  

(logical chain, easy understandable)

• Documented  

(fully commented, defined arguments types, readme)

• Covered by tests  

(simple checks for input data/batch shape/model output, 

and unit tests for each pipeline step)



Problem statement

Text tasks are complicated

NLP is interesting
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Input data in NLP

• Text is always a part of an input 

(token, sentence, article, dialogue, html page etc)

• Tags/Labels

• Spans (start and end indexes)



Field

• Field is a main class which will be inherited by others

• Main methods:

• count_vocab_items (count items for specific field)

• index (field to vector of indexes, argument – a vocabulary)

• get_padding_lengths (get field lengths)

• as_tensor (padded tensor of indexes, argument – padding_lengths)

• batch_tensor (create batch of fields, argument – list of tensors)



Code
Field



Text Field

Text Field should have next methods: 

• preprocess (preprocess text, argument – a list of preprocessors)

• tokenize (tokenize text, argument – a tokenizer)

• index (index text, argument – a vocabulary)

• get padding length (pad text, argument – maximum number of 

tokens)

• as_tensor (returns a tensor, basic method for all fields)

Input Text

Input Labels

Text Field

Label Field



Code
Text Field



Code
Text Field

Preprocessing and tokenization



Code
Text Field

Index fields using vocabulary



Code
Text Field

Get padding length and return field as tensor



Label Field

Label field should be convertible to appropriate model format 

based on vocabulary: 

• index (label names to index, argument – vocabulary)

• as_tensor (returns a tensor with a proper shape)

• count_vocab_items (count labels for vocabulary creating)

Input Text

Input Labels

Text Field

Label Field



Code
Label Field

Count labels to create a vocabulary



Other fields

• Metadata Field – other information which will not be used for 

training (raw text, author, topic, etc)index (label names to index, 

argument – vocabulary)

• Categorical Field – for any categorical data which could be 

encoded as embeddings or OHE (post type, source etc)

• Span Field – start, end or inside index

• Index field – index for the right answer over the sequence

• Create your own fields which contain “as tensor” method, for 

comfortable use inside your model

Input Text

Input Labels

Text Field

Label Field



Instance

• Instance is a collection of fields

• One sample – one instance

• Has Mapping[str, Field] type, all fields are keyed

• Get field as tensor by key (“text”, “labels" – in our example)

• Should contain “index_fields” method to index all fields by the 

given vocabulary

Instance
Input Text

Input Labels

Text Field

Label Field



Code
Instance



Code
Instance

Default settings



Code
Instance

Methods are applied to all fields



Vocabulary

• Vocabulary is a class where all vocabularies (text, labels, 

categories) are available by namespace

• We should be able to create a vocabulary from list of instances, 

counters or predefined files

• Add special tokens: OOV (Out-of-Vocabulary), padded

• Should have options to get statistics, “string to index” and “index 

to string”

Instance

Vocabulary

Input Text

Input Labels

Text Field

Label Field



Code
Vocabulary



Code
Vocabulary

Count items for all fields



Starting a pipeline schema

1. Input data to Fields

2. Fields to Instance

3. List of Instances to Vocabulary

4. Index Fields with Vocabulary

Instance

Vocabulary

Input Text

Input Labels

Text Field

Label Field

1 2

34



DataSet Reader

• Our pipeline schema should be used in dataset reader

• Each task should have own dataset reader in which you will 

construct instances and vocabulary

• Could be lazy



Iterator

• Gets output from Dataset Reader

• Types:

• “Simple Iterator” just shuffles data

• “Bucket Iterator” creates batches with the same length

• Index fields before training



Code
Iterator



Code
Iterator

Each iterator has its own create_batches method



Code
Iterator

Index batch instances



Code
Iterator

Batch to TensorDict



Batch

• Batch is an intermediate class, where we do a “dirty job”:

• index 

• get_padding_lengths 

• as_tensor 

• We prepare `TensorDict` as an input to our model

{
    “input”: torch.Size([70, 152]), 
    “sequence_length”: torch.Size([70]),
    “labels”: torch.Size([70, 29]),
    “serial_index”: torch.Size([70])
}

Batch (TensorDict type)



Code
Batch



Code
Batch Index instances



Code
Batch

Get padding length for each field



Code
Batch

Get tensors



Code
Batch

Aggregate in batch



Model

• Model should have next methods

• from_config (build model from config)

• _load (load model weights)

• Calculate loss and metrics inside forward pass:

• loss and metrics depend on your task and could 

be very specific —> easier implementation

• for correct parallelization

Training Neural Nets on Larger Batches:  
Practical Tips for 1-GPU, Multi-GPU & Distributed setups,
Thomas Wolf
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Code
Model

Loss



Code
Model

Metrics



Code
Model

Other useful outputs



Trainer

Training process is fully configurable in Trainer: 

• Train and Validation dataset (List of Instances) 

• Iterator 

• Model

• Optimizer 

• Train configurations (number of epochs, shuffling, metrics) 

• Callbacks (early stopping, learning rate schedule, logging etc)



Code
Trainer. Initialization



Code
Trainer. Initialization

Already predefined



Code
Trainer. Initialization

Training configurations



Declarative syntax

• focus on building logic of software without actually 

describing its flow

• allows us to specify an entire experiment using 

JSON

• allows us to change architectures without changing 

code



Data, Iterator
Config

"data_folder": "data/training_data", 
"dataset_reader": { 
    "type": "multilabel_classification" 
} 
"preprocessing": { 
     "lower": true,  
     "max_seq_len": 150,  
     "include_length": true,  
     "label_one_hot": true,  
     “preprocessors": [ ["HtmlEntitiesUnescaper"], ["BoldTagReplacer"], 
                                    ["HtmlTagReplacer", [" "]], ["URLReplacer", [" urlTag “]]]  
 }

Data

"type": "bucket_iterator", 
"params": { 
    "batch_size": 1000, 
    "shuffle": true, 
    "sort_key": {  
        "field": "text",  
        "type": "length"  
    }, 

"biggest_batch_first": true, 
"batch_first": true 

}

Iterator



Model, Optimizer, Trainer
Config

"type": "mixed_rnn",  
"params": {  
    "embedding_dropout": 0.3,  
    "rnn_1": { 
        "rnn_type": "lstm",  
        "hidden_cells": 100,  
        "hidden_layers": 1 
     },  
    "rnn_2": {  
        "rnn_type": "gru",  
        "hidden_cells": 100,  
        "hidden_layers": 1  
    },  
    "aggregation_layers": {  
        "types": ["max_pool", "mean_pool"]  
    },  
    "activation": “sigmoid”, 
    "loss": { 
         "type": “bce_with_logits", 
         "params": {} 
    } 
    "metrics": { 
        "fscore": { 
           "average": “macro" 
       } 
    } 
}

Model

"optimizer": { 
    "type": "adam", 
    "params": {"lr": 0.001 } 
}

Optimizer
"serialization_dir": "models",     
"accumulation_steps": 2,     "grad_norm": 1,      
"num_epochs": 4,      
"cuda_device": 0,      
"patience": 2,      
"early_stopping_metric": "-loss",     "lr_scheduler": 
{ 
    “type”: “w_linear",      
    "params": {        
        "warmup_steps": 300      
    },      
"fp16": true,      
“fp16_opt_level": "O2"

Trainer



How does declarative syntax work? 

• get model class “by name”

• initialize model with “from_config” method

• the same approach for other objects  

(Dataset Readers, Iterators, Optimizers, Loss, etc.)



Code
Model training pipeline



Code
Model training pipeline

Load config file



Code
Model training pipeline

Load data



Code
Model training pipeline

Create vocab



Code
Model training pipeline

Initialize iterator



Code
Model training pipeline

Define model and set optimizer



Code
Model training pipeline

Training loop



Code
Model training pipeline

Save vocab and config file



Save model

• Config file (you can reproduce an experiment if you 

have a config file)

• Vocabulary (match embeddings indexes or labels)

• Model weights (load model)



Reproduce experiments

• To reproduce experiments you should have the same:

• code

• data

• configuration files

• DVC is the best choice for this purpose



DVC pipeline

• Add data to DVC

• dvc run pipeline code (data preprocessing —> model training —> model evaluation) 

• change something in your pipeline code

• make new git checkout

• dvc repro will reproduce your experiment with new changed code (dvc detects changes 

and run your pipeline one more time)

• commit code and experiment result



DVC



DVC

Easy to version data
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DVC

Easy to version data

• create storage in Azure (AWS, etc)

• manage connection to this storage

• create local dvc cache

• use "dvc push" and "dvc pull" to upload/download data

• commit dvc config

• download required data by hash



DVC

I don't recommend to use DVC for a pipeline 

• we declare all training settings in configuration file and 

can store just config file

• if we want to compare training curves, we should create 

a dummy config, where a name of the experiment will 

be used (not convenient)

• each experiment will have its own GitHub branch (don’t 

need this)



Reproducible workflow

Store data in DVC

Actual Code

Dependencies

Each version has its unique data
and not changeable your code
with dependencies versions
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Configuration file 2 Experiment 2

Configuration file 3 Experiment 3

Run experiments, look at metrics and 
choose the best configuration



Reproducible workflow

Store data in DVC

Actual Code

Dependencies

Each version has its unique data
and not changeable your code
with dependencies versions

Configuration file 1 Experiment 1

Configuration file 2 Experiment 2

Configuration file 3 Experiment 3

Run experiments, look at metrics and 
choose the best configuration

Commit and create tag 
“Released_model_v9”

You can always pull this commit, download 
data by hash, reproduce environment  
(from requirements.txt) and experiments 
(from config)



Predictor

• Input data – JSON-format (API format) 

• Dataset Reader adopted to JSON-format 

• Iterator for batch processing 

• Options to get predictions with probabilities, return top-5 

most probable labels, change thresholds and other 

options for validating results



Code
Json DataSet Reader

is used for data preprocessing in Predictor



Code
Predictor



Code
Predictor

main method



Code
Predictor

Json to List[Instance]

1

1



Code
Predictor

Making predictions

2

2
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Production pipeline



Code
Production pipeline

Load config file



Code
Production pipeline

Initialize dataset reader



Code
Production pipeline

Define iterator



Code
Production pipeline

Load model



Code
Production pipeline

Define predictor and integrate it 
in your production pipeline



Instance

Vocabulary

Input Text

Input Labels

Text Field

Label Field

Dataset Reader

Iterator

Config

Model

Trainer/Predictor

1

2

3

4

4

4

Pipeline schema



Conclusions

• Abstractions make a pipeline more structured, logical and 

understandable

• But be careful with that in case that every new abstraction 

makes your code more complicated

• Declarative syntax helps to keep a pipeline simple and set 

the whole experiment in config without code changing

• With good base, prototyping and deployment become very 

fast 



Resources

• AllenNLP GitHub: https://github.com/allenai/allennlp

• Writing Code for NLP Research: https://bit.ly/2Desi4b

• TorchText: https://torchtext.readthedocs.io/en/latest/

• DVC: https://dvc.org/

https://dvc.org/
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