
Vitalii Radchenko @ YouScan

13 августа 2019

Best Practices for NLP Pipelines and
Reproducible Research

You’ll find out

• What is a good pipeline

• How to process effectively input data

• How to build a train pipeline

• Why is a declarative syntax useful

• Reproducible research

• How to alter training to predictive pipeline with small efforts

Pipeline

• sequences of processing and analysis steps applied to

data for a specific purpose

• save time on design time and coding, if you expect to

encounter similar tasks

• simplifies deployment to production

What is a good pipeline?

• Reusable pipeline  

(applied to different tasks with minor changes)

• Structured  

(logical chain, easy understandable)

• Documented  

(fully commented, defined arguments types, readme)

• Covered by tests  

(simple checks for input data/batch shape/model output,

and unit tests for each pipeline step)

Problem statement

Text tasks are complicated

NLP is interesting

Raw text

1 2 3 4

5 6 7

Indexed text

1 2 3 4

5 6 7 0

Padded indexed text

0.1 0.2 0.3 0.5 0.5 0.1 0.6 0.2

0.9 0.7 0.5 0.7 0.8 0.4 0.0 0.0

Batch

Input data in NLP

• Text is always a part of an input 

(token, sentence, article, dialogue, html page etc)

• Tags/Labels

• Spans (start and end indexes)

Field

• Field is a main class which will be inherited by others

• Main methods:

• count_vocab_items (count items for specific field)

• index (field to vector of indexes, argument – a vocabulary)

• get_padding_lengths (get field lengths)

• as_tensor (padded tensor of indexes, argument – padding_lengths)

• batch_tensor (create batch of fields, argument – list of tensors)

Code
Field

Text Field

Text Field should have next methods:

• preprocess (preprocess text, argument – a list of preprocessors)

• tokenize (tokenize text, argument – a tokenizer)

• index (index text, argument – a vocabulary)

• get padding length (pad text, argument – maximum number of

tokens)

• as_tensor (returns a tensor, basic method for all fields)

Input Text

Input Labels

Text Field

Label Field

Code
Text Field

Code
Text Field

Preprocessing and tokenization

Code
Text Field

Index fields using vocabulary

Code
Text Field

Get padding length and return field as tensor

Label Field

Label field should be convertible to appropriate model format

based on vocabulary:

• index (label names to index, argument – vocabulary)

• as_tensor (returns a tensor with a proper shape)

• count_vocab_items (count labels for vocabulary creating)

Input Text

Input Labels

Text Field

Label Field

Code
Label Field

Count labels to create a vocabulary

Other fields

• Metadata Field – other information which will not be used for

training (raw text, author, topic, etc)index (label names to index,

argument – vocabulary)

• Categorical Field – for any categorical data which could be

encoded as embeddings or OHE (post type, source etc)

• Span Field – start, end or inside index

• Index field – index for the right answer over the sequence

• Create your own fields which contain “as tensor” method, for

comfortable use inside your model

Input Text

Input Labels

Text Field

Label Field

Instance

• Instance is a collection of fields

• One sample – one instance

• Has Mapping[str, Field] type, all fields are keyed

• Get field as tensor by key (“text”, “labels" – in our example)

• Should contain “index_fields” method to index all fields by the

given vocabulary

Instance
Input Text

Input Labels

Text Field

Label Field

Code
Instance

Code
Instance

Default settings

Code
Instance

Methods are applied to all fields

Vocabulary

• Vocabulary is a class where all vocabularies (text, labels,

categories) are available by namespace

• We should be able to create a vocabulary from list of instances,

counters or predefined files

• Add special tokens: OOV (Out-of-Vocabulary), padded

• Should have options to get statistics, “string to index” and “index

to string”

Instance

Vocabulary

Input Text

Input Labels

Text Field

Label Field

Code
Vocabulary

Code
Vocabulary

Count items for all fields

Starting a pipeline schema

1. Input data to Fields

2. Fields to Instance

3. List of Instances to Vocabulary

4. Index Fields with Vocabulary

Instance

Vocabulary

Input Text

Input Labels

Text Field

Label Field

1 2

34

DataSet Reader

• Our pipeline schema should be used in dataset reader

• Each task should have own dataset reader in which you will

construct instances and vocabulary

• Could be lazy

Iterator

• Gets output from Dataset Reader

• Types:

• “Simple Iterator” just shuffles data

• “Bucket Iterator” creates batches with the same length

• Index fields before training

Code
Iterator

Code
Iterator

Each iterator has its own create_batches method

Code
Iterator

Index batch instances

Code
Iterator

Batch to TensorDict

Batch

• Batch is an intermediate class, where we do a “dirty job”:

• index

• get_padding_lengths

• as_tensor

• We prepare `TensorDict` as an input to our model

{
 “input”: torch.Size([70, 152]),
 “sequence_length”: torch.Size([70]),
 “labels”: torch.Size([70, 29]),
 “serial_index”: torch.Size([70])
}

Batch (TensorDict type)

Code
Batch

Code
Batch Index instances

Code
Batch

Get padding length for each field

Code
Batch

Get tensors

Code
Batch

Aggregate in batch

Model

• Model should have next methods

• from_config (build model from config)

• _load (load model weights)

• Calculate loss and metrics inside forward pass:

• loss and metrics depend on your task and could

be very specific —> easier implementation

• for correct parallelization

Training Neural Nets on Larger Batches:  
Practical Tips for 1-GPU, Multi-GPU & Distributed setups,
Thomas Wolf

Code
Model

Code
Model

Loss

Code
Model

Metrics

Code
Model

Other useful outputs

Trainer

Training process is fully configurable in Trainer:

• Train and Validation dataset (List of Instances)

• Iterator

• Model

• Optimizer

• Train configurations (number of epochs, shuffling, metrics)

• Callbacks (early stopping, learning rate schedule, logging etc)

Code
Trainer. Initialization

Code
Trainer. Initialization

Already predefined

Code
Trainer. Initialization

Training configurations

Declarative syntax

• focus on building logic of software without actually

describing its flow

• allows us to specify an entire experiment using

JSON

• allows us to change architectures without changing

code

Data, Iterator
Config

"data_folder": "data/training_data", 
"dataset_reader": { 
 "type": "multilabel_classification" 
} 
"preprocessing": {
 "lower": true,  
 "max_seq_len": 150,  
 "include_length": true,  
 "label_one_hot": true,  
 “preprocessors": [["HtmlEntitiesUnescaper"], ["BoldTagReplacer"], 
 ["HtmlTagReplacer", [" "]], ["URLReplacer", [" urlTag “]]]  
 }

Data

"type": "bucket_iterator",
"params": { 
 "batch_size": 1000, 
 "shuffle": true, 
 "sort_key": {  
 "field": "text",  
 "type": "length"  
 },

"biggest_batch_first": true,
"batch_first": true

}

Iterator

Model, Optimizer, Trainer
Config

"type": "mixed_rnn",  
"params": {  
 "embedding_dropout": 0.3,  
 "rnn_1": { 
 "rnn_type": "lstm",  
 "hidden_cells": 100,  
 "hidden_layers": 1 
 },  
 "rnn_2": {  
 "rnn_type": "gru",  
 "hidden_cells": 100,  
 "hidden_layers": 1  
 },  
 "aggregation_layers": {  
 "types": ["max_pool", "mean_pool"]  
 },  
 "activation": “sigmoid”,
 "loss": {
 "type": “bce_with_logits",
 "params": {}
 }
 "metrics": {
 "fscore": {
 "average": “macro"
 }
 } 
}

Model

"optimizer": { 
 "type": "adam", 
 "params": {"lr": 0.001 }
}

Optimizer
"serialization_dir": "models",
"accumulation_steps": 2, "grad_norm": 1,
"num_epochs": 4,
"cuda_device": 0,
"patience": 2,
"early_stopping_metric": "-loss", "lr_scheduler":
{
 “type”: “w_linear",
 "params": {
 "warmup_steps": 300
 },
"fp16": true,
“fp16_opt_level": "O2"

Trainer

How does declarative syntax work?

• get model class “by name”

• initialize model with “from_config” method

• the same approach for other objects  

(Dataset Readers, Iterators, Optimizers, Loss, etc.)

Code
Model training pipeline

Code
Model training pipeline

Load config file

Code
Model training pipeline

Load data

Code
Model training pipeline

Create vocab

Code
Model training pipeline

Initialize iterator

Code
Model training pipeline

Define model and set optimizer

Code
Model training pipeline

Training loop

Code
Model training pipeline

Save vocab and config file

Save model

• Config file (you can reproduce an experiment if you

have a config file)

• Vocabulary (match embeddings indexes or labels)

• Model weights (load model)

Reproduce experiments

• To reproduce experiments you should have the same:

• code

• data

• configuration files

• DVC is the best choice for this purpose

DVC pipeline

• Add data to DVC

• dvc run pipeline code (data preprocessing —> model training —> model evaluation)

• change something in your pipeline code

• make new git checkout

• dvc repro will reproduce your experiment with new changed code (dvc detects changes

and run your pipeline one more time)

• commit code and experiment result

DVC

DVC

Easy to version data

DVC

Easy to version data

• create storage in Azure (AWS, etc)

DVC

Easy to version data

• create storage in Azure (AWS, etc)

• manage connection to this storage

DVC

Easy to version data

• create storage in Azure (AWS, etc)

• manage connection to this storage

• create local dvc cache

DVC

Easy to version data

• create storage in Azure (AWS, etc)

• manage connection to this storage

• create local dvc cache

• use "dvc push" and "dvc pull" to upload/download data

DVC

Easy to version data

• create storage in Azure (AWS, etc)

• manage connection to this storage

• create local dvc cache

• use "dvc push" and "dvc pull" to upload/download data

• commit dvc config

DVC

Easy to version data

• create storage in Azure (AWS, etc)

• manage connection to this storage

• create local dvc cache

• use "dvc push" and "dvc pull" to upload/download data

• commit dvc config

• download required data by hash

DVC

I don't recommend to use DVC for a pipeline

• we declare all training settings in configuration file and

can store just config file

• if we want to compare training curves, we should create

a dummy config, where a name of the experiment will

be used (not convenient)

• each experiment will have its own GitHub branch (don’t

need this)

Reproducible workflow

Store data in DVC

Actual Code

Dependencies

Each version has its unique data
and not changeable your code
with dependencies versions

Reproducible workflow

Store data in DVC

Actual Code

Dependencies

Each version has its unique data
and not changeable your code
with dependencies versions

Configuration file 1 Experiment 1

Configuration file 2 Experiment 2

Configuration file 3 Experiment 3

Run experiments, look at metrics and
choose the best configuration

Reproducible workflow

Store data in DVC

Actual Code

Dependencies

Each version has its unique data
and not changeable your code
with dependencies versions

Configuration file 1 Experiment 1

Configuration file 2 Experiment 2

Configuration file 3 Experiment 3

Run experiments, look at metrics and
choose the best configuration

Commit and create tag
“Released_model_v9”

You can always pull this commit, download
data by hash, reproduce environment  
(from requirements.txt) and experiments
(from config)

Predictor

• Input data – JSON-format (API format)

• Dataset Reader adopted to JSON-format

• Iterator for batch processing

• Options to get predictions with probabilities, return top-5

most probable labels, change thresholds and other

options for validating results

Code
Json DataSet Reader

is used for data preprocessing in Predictor

Code
Predictor

Code
Predictor

main method

Code
Predictor

Json to List[Instance]

1

1

Code
Predictor

Making predictions

2

2

Code
Production pipeline

Code
Production pipeline

Load config file

Code
Production pipeline

Initialize dataset reader

Code
Production pipeline

Define iterator

Code
Production pipeline

Load model

Code
Production pipeline

Define predictor and integrate it
in your production pipeline

Instance

Vocabulary

Input Text

Input Labels

Text Field

Label Field

Dataset Reader

Iterator

Config

Model

Trainer/Predictor

1

2

3

4

4

4

Pipeline schema

Conclusions

• Abstractions make a pipeline more structured, logical and

understandable

• But be careful with that in case that every new abstraction

makes your code more complicated

• Declarative syntax helps to keep a pipeline simple and set

the whole experiment in config without code changing

• With good base, prototyping and deployment become very

fast

Resources

• AllenNLP GitHub: https://github.com/allenai/allennlp

• Writing Code for NLP Research: https://bit.ly/2Desi4b

• TorchText: https://torchtext.readthedocs.io/en/latest/

• DVC: https://dvc.org/

https://dvc.org/

Data Scientist @ YouScan
Vitalii Radchenko

ODS-slack: @vradchenko
Email: radchenko.vitaliy.o@gmail.com
FB: vradchenko

