Neural language models: training text representations you've always been waiting for Halyna Oliinyk @ <u>1touch.io</u>

What is the motivation?

- of dimensionality;
- ability to capture syntax, morphology, semantics, dependencies between sentences, etc.

continuous space embeddings help to alleviate the curse

better probability distributions over sequences of words;

ULMFit

Transfer learning

- inductive transfer learning: source task and target task are different, source domains and target domains may be different or the same;
- transductive transfer learning: target tasks are the same, source and target domains are different;
- unsupervised transfer learning: similar to inductive transfer learning, but designed specifically for unsupervised models.

• mathematical formulation of a standard LSTM is:

$$i_{t} = \sigma(W^{i}x_{t} + U^{i}h_{t-1})$$

$$f_{t} = \sigma(W^{f}x_{t} + U^{f}h_{t-1})$$

$$o_{t} = \sigma(W^{o}x_{t} + U^{o}h_{t-1})$$

$$\tilde{c}_{t} = \tanh(W^{c}x_{t} + U^{c}h_{t-1})$$

$$c_{t} = i_{t} \odot \tilde{c}_{t} + f_{t} \odot + \tilde{c}_{t-1}$$

$$h_{t} = o_{t} \odot \tanh(c_{t})$$

stochastic gradient descent is defined as:

$$w_{k+1} = w_k - \gamma_k \hat{\nabla} f(w_k),$$

AWD-LSTM [1]

Algorithm 1 Non-monotonically Triggered ASGD (NT-ASGD)

non-monotone interval n.

- 2: while stopping criterion not met do
- 3: step (1).
- if mod(k, L) = 0 and T = 0 then 4:
- 5:
- 6:
- Set $T \leftarrow k$ 7:
- end if 8:
- Append v to logs 9:
- $t \leftarrow t + 1$ 10:
- end if 11:
- 12: end while

return $\frac{\sum_{i=T}^{k} w_i}{(k-T+1)}$

AWD-LSTM [2]

```
Inputs: Initial point w_0, learning rate \gamma, logging interval L,
```

```
1: Initialize k \leftarrow 0, t \leftarrow 0, T \leftarrow 0, \log t \leftarrow []
```

```
Compute stochastic gradient \hat{\nabla} f(w_k) and take SGD
```

```
Compute validation perplexity v.
if t > n and v > \min_{l \in \{t-n, \cdots, t\}} \log[1] then
```

- variable length backpropagation sequences;
- DropConnect;
- variational dropout;
- embedding dropout;
- weight tying;
- independent embedding size and hidden size;

AWD-LSTM [3]

activation regularization and temporal activation regularization.

Discriminative fine-tuning

• SGD learning rule with discriminative fine-tuning:

$$\theta_t^l = \theta_{t-1}^l - \eta^l \cdot \nabla_{\theta^l} J(\theta)$$

Slanted triangular rates

 $p = \begin{cases} t/cut, & \text{if } t < cut \\ 1 - \frac{t-cut}{cut \cdot (1/cut_{-}frac-1)}, & \text{otherwise} \end{cases}$ $\eta_t = \eta_{max} \cdot \frac{1 + p \cdot (ratio - 1)}{ratio}$

Batch normalization

- gradient descent step is:
- each dimension is normaliz
- scaling and shifting normalized value: $y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$.
- batch normalizing transformation

$$\Theta_2 \leftarrow \Theta_2 - \frac{\alpha}{m} \sum_{i=1}^m \frac{\partial F_2(\mathbf{x}_i, \Theta_2)}{\partial \Theta_2}$$
zed as: $\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$

$$\mathsf{rm:} \quad \mathsf{BN}_{\gamma,\beta}: x_{1...m} \to y_{1...m}$$

And something more...

- concat pooling:
- gradual unfreezing;
- BPTT for text classification;
- bidirectional language model.

 $\mathbf{h}_{c} = [\mathbf{h}_{T}, \texttt{maxpool}(\mathbf{H}), \texttt{meanpool}(\mathbf{H})]$

ULMFiT = general domain pretraining + target task LM finetuning + target task classifier finetuning

BERT

General attention mechanism

Decoder: RNN with input from previous state + dynamic context vector.

Attention layer: parameterized by a simple feed-forward network

Additive Attention

Encoder: bidirectional RNN

(Source)

A family of attention mechanisms [1]

Name	
Content-base attention	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \operatorname{cosine}$
Additive(*)	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \mathbf{v}_a^{T} \operatorname{tank}$
Location- Base	$\alpha_{t,i} = \operatorname{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies th position.
General	score $(\mathbf{s}_t, \mathbf{h}_i) = \mathbf{s}_t^\top \mathbf{W}_a \mathbf{h}_a$ where \mathbf{W}_a is a trainable
Dot-Product	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \boldsymbol{s}_t^{\top} \boldsymbol{h}_i$
Scaled Dot-	score($\boldsymbol{s}_t, \boldsymbol{h}_i$) = $\frac{\boldsymbol{s}_t^{T} \boldsymbol{h}_i}{\sqrt{n}}$
Product(^)	Note: very similar to th
	where n is the dimensi

Alignment score function

 $e[\boldsymbol{s}_t, \boldsymbol{h}_i]$

 $h(\mathbf{W}_a[\mathbf{s}_t; \mathbf{h}_i])$

ne softmax alignment to only depend on the target

\boldsymbol{h}_i

le weight matrix in the attention layer.

ne dot-product attention except for a scaling factor; ion of the source hidden state.

A family of attention mechanisms [2]

Name			
Self-	Relating different position		
Attention(&)	attention can adopt any		
	sequence with the same i		
Global/Soft	Attending to the entire in		
Local/Hard	Attending to the part of in		

Definition

ns of the same input sequence. Theoretically the selfscore functions above, but just replace the target input sequence.

put state space.

nput state space; i.e. a patch of the input image.

Self-attention

The FBI is chasing a cr						
	The	FBI is chasing a c				
	The	FBI	is chasing a			
	The	FBI	is	chasing		
	The	FBI	is	chasin		
	The	FBI	is	chasin		
	The	FBI	is	chasin		
	The	FBI	is	chasin		
	The	FBI	is	chasin		
	The	FBI	is	chasin		
_						

riminal on the run. criminal on the run. a criminal on the run. g a criminal on the run. ng a criminal on the run. a criminal on the run. g criminal on the run. g a criminal on the run. g a criminal the run. on

g a criminal on the run.

Neural Turing machine architecture

Neural Turing machine main components

- reading: $\sum_{i} w_t(i) = 1, \quad 0 \le w_t(i)$
- writing: $\tilde{\mathbf{M}}_t(i) \leftarrow \mathbf{M}_{t-1}(i) [1 w_t(i)]$
- focusing by content: $w_t^c(i)$
- focusing by location: \mathbf{w}_t^g

$$\tilde{w}_t(i) \longleftarrow \sum_{j=0}^{N-1} w_t^g(j) \, s_t(i-j) \qquad w_t(i) \longleftarrow \frac{\tilde{w}_t(i)}{\sum_j w_t(i-j)}$$

$$\leq 1, \forall i.$$
 $\mathbf{r}_t \longleftarrow \sum_i w_t(i) \mathbf{M}_t(i),$

$$(i)\mathbf{e}_t], \qquad \mathbf{M}_t(i) \longleftarrow \tilde{\mathbf{M}}_t(i) + w_t(i) \mathbf{a}_t.$$

$$\leftarrow \frac{\exp\left(\beta_t K[\mathbf{k}_t, \mathbf{M}_t(i)]\right)}{\sum_j \exp\left(\beta_t K[\mathbf{k}_t, \mathbf{M}_t(j)]\right)} \cdot K[\mathbf{u}, \mathbf{v}] = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \cdot ||\mathbf{v}||} \cdot \left(|\mathbf{v}||\right) \cdot$$

 $rac{ ilde w_t(i)^{\gamma_t}}{ ilde w_t(j)^{\gamma_t}}$

Addressing mechanism in neural Turing machines

Multi-layer bidirectional transformer encoder [1]

Multi-layer bidirectional transformer encoder [2]

Scaled Dot-Product Attention

Attention mechanism of BERT

- scaled dot-product attenti
- multi-head attention: M

ion: Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

 $\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O \\ \end{aligned} \\ \begin{aligned} \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$

Masked LM

Next sentence prediction

Source: BERT [Devlin et al., 2018], with modifications

BERT pre-training

BERT = pre-training with multilayer bidirectional transformer encoder + fine-tuning on the target task

GPT

Learning high-capacity language model [1]

maximize language modeling objective: \bullet

$$L_1(\mathcal{U}) = \sum_i \log P(u_i | u_{i-k}, \dots, u_{i-1}; \Theta)$$

transformer-decoder with memory-compressed attention: \bullet

Learning high-capacity language model[2]

output distribution over target tokens:

 $h_0 = UW_e + W_p$ $h_l = \texttt{transformer_block}(h_{l-1}) \forall i \in [1, n]$ $P(u) = \texttt{softmax}(h_n W_e^T)$

Supervised fine-tuning

- objective to maximize: I

• linear output layer to predict y: $P(y|x^1, ..., x^m) = \operatorname{softmax}(h_l^m W_y).$

$$L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1,\ldots,x^m).$$

Transformer architecture and learning objectives

GPT = learning highcapacity language model + fine-tuning for a target task

Bidirectional language models

- forward LM: $p(t_1, t_2, \ldots, t_N)$
- backward LM: $p(t_1, t_2, \ldots, t_n)$
- **biLM:** $\sum_{k=1}^{N} (\log p(t_k \mid t_1, \dots, t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s) + \log p(t_k \mid t_{k+1}, \dots, t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s)).$

$$= \prod_{k=1}^{N} p(t_k \mid t_1, t_2, \dots, t_{k-1}).$$

$$t_N) = \prod_{k=1}^{N} p(t_k \mid t_{k+1}, t_{k+2}, \dots, t_N).$$

$$f_1; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s)$$

$$f_2 = \sum_{k=1}^{N} (\Theta_x, \Theta_y)$$

Combining intermediate layer representations

- set of biLM representation
- task specific weighting of all biLM layers: $\mathbf{ELMo}_{k}^{task} = E(R_{k}; \Theta^{task}) = \gamma^{task} \sum_{i=0}^{L} S_{i}^{task}$

$$\left[s_{j}^{task}\mathbf{h}_{k,j}^{LM}
ight]$$

ELMo = weighted bidirectional language model + task-specific training

Thank you for attention!