Bag of freebies

from competitive machine learning

Eugene Khvedchenya <u>ekhvedchenya@gmail.com</u> <u>linkedin.com/in/cvtalks</u> <u>http://qithub.com/BloodAxe</u>

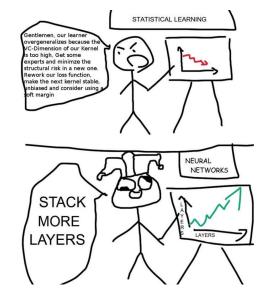
6		Eugene Khvedchenya							
Girod	Italia	Computer Visio Odesa, Odessa Joined 2 years a		he past day	1 61161	vers 24 ving 20	Competitions Master		
Home Co	ompetitions (11)	Kernels Disc	cussion (22) Da	tasets •••				Edit Profile	
Competitions Master		දද්	Kernels Contributor			Discussion	Contributor	ф	
Rank 285 of 118,046			Unranked			Unranked			
2	2	2	() 0	(i) 0	() 0	() 3	© 3	() 11	
APTOS 2019 Blindness Det 7 th						10th place solution w/ code 69 @-9 days ago votes			
2018 Data Science Bowl ∳a year ago Top 1%		10th of 3634	No kernel results			107-th place solution @ •a year ago		21 votes	
Human Protein Atlas Image44th@-8 months ago-Top 3%of 2169						Augmenting multi-spectral 1 @-4 days ago vo			

Eugene Khvedchenya <u>ekhvedchenya@gmail.com</u> <u>linkedin.com/in/cvtalks</u> <u>http://github.com/BloodAxe</u>

What is "competitive machine learning"?

- In: Task, Data, Target Metric
- Out: Build a best model

kaggle

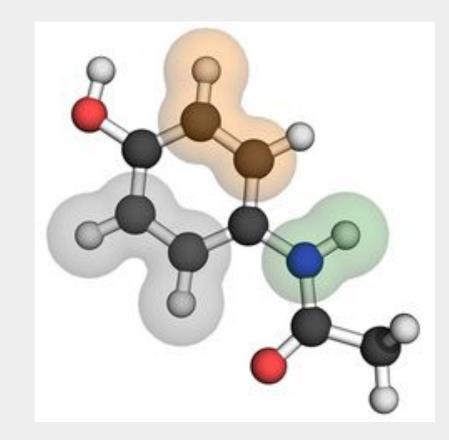

DRIVENDATA SIGNATE

What is "competitive machine learning"?

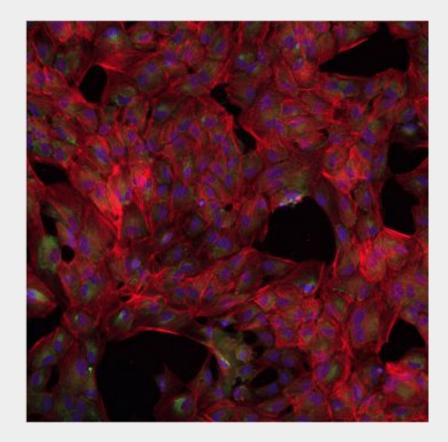
- In: Task, Data, Target Metric
- Out: Build a best model

kaggle

DRIVENDATA SIGNATE


Menu

- Introduction
- Loss functions tricks
- Dataset tricks
- Training tricks


Fine-grained segmentation task for fashion and apparel

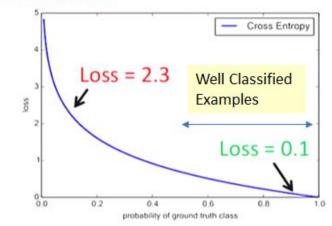
Predicting magnetic interactions between pair of atoms

Disentangling biological signal from experimental noise in cellular images

Build a model to transcribe ancient Kuzushiji into contemporary Japanese characters

Loss function tricks

- Focal Loss / Reduced FL
- Soft Jaccard / Soft Dice loss
- Wing Loss
- Lovazh loss
- Combining losses


Loss function tricks - Focal Loss

Problem: Huge class imbalance (1:10000)

Solution: Dampen weight of easy examples to total loss, focusing model on hard examples

Outcome: RetinaNet reached SOTA on COCO for single-stage objection detection in 2018

- 100000 easy : 100 hard examples
- 40x bigger loss from easy examples

Loss function tricks - Focal Loss

Problem: Huge class imbalance (1:10000)

Solution: Dampen weight of easy examples to total loss, focusing model on hard examples

Outcome: RetinaNet reached SOTA on COCO for single-stage objection detection in 2018

 $\begin{aligned} \mathrm{CE}(p,y) &= \begin{cases} -\log(p) & \text{if } y = 1\\ -\log(1-p) & \text{otherwise.} \end{cases} \\ \mathrm{FL}(p_{\mathrm{t}}) &= -\alpha_{\mathrm{t}}(1-p_{\mathrm{t}})^{\gamma}\log(p_{\mathrm{t}}). \\ p_{\mathrm{t}} &= \begin{cases} p & \text{if } y = 1\\ 1-p & \text{otherwise,} \end{cases} \end{aligned}$

Loss function tricks - Focal Loss

Problem: Huge class imbalance (1:10000)

Solution: Dampen weight of easy examples to total loss, focusing model on hard examples

Outcome: RetinaNet reached SOTA on COCO for single-stage objection detection in 2018

Loss function tricks - Reduced Focal Loss

Problem: Low recall for rare classes in object detection

Idea: Quickly dampen loss for 'good enough' predictions

Outcome: Recall increased by +11% for rare classes.

Winning solution on "xView object detection in satellite imagery"

Arxiv: https://arxiv.org/abs/1903.01347

Loss function tricks - Reduced Focal Loss

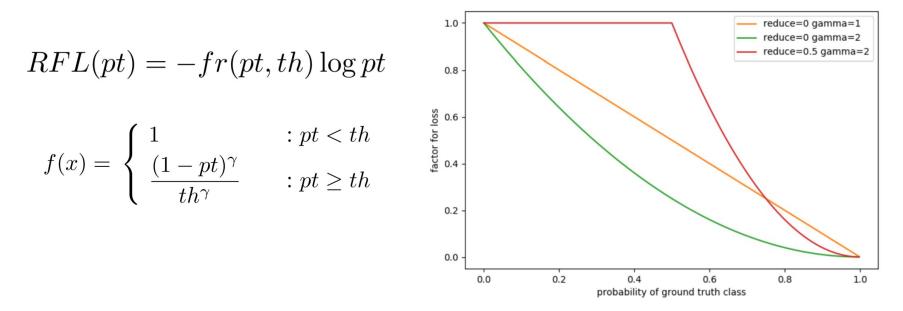
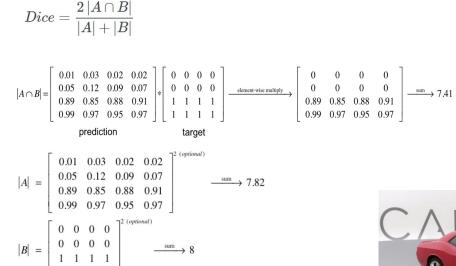


Figure 2: Reduced Focal Loss - Cut-off Factor.

Arxiv: https://arxiv.org/abs/1903.01347

Loss function tricks - Soft Dice / Jaccard


Problem: Binary Cross Entropy is a proxy for target metric (IoU, Dice) for image segmentation $Dice = rac{2 \left| A \cap B
ight|}{\left| A
ight| + \left| B
ight|}$ (A (AOB) B $J(A,B) = rac{\left| A \cap B
ight|}{\left| A \cup B
ight|}$ (A (AUB) B

Idea: Optimize target metric directly

Outcome: Target metric optimized directly, model makes more "sharp" masks

Loss function tricks - Soft Dice / Jaccard

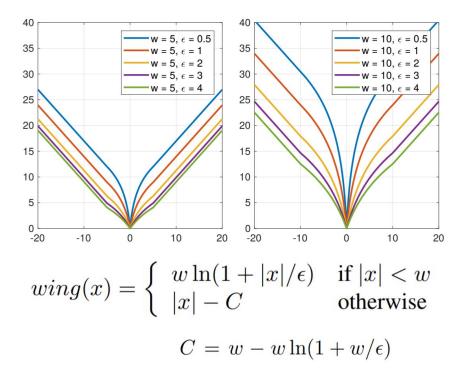
Dice = 2 * 7.41 / (7.82+8) = 0.93

Arxiv: https://arxiv.org/pdf/1801.05746.pdf

Loss function tricks - Soft Dice / Jaccard

Used by top-performing teams in

- Carvana Image Masking Channels (1st place)
- 2018 Data Science Bowl (1st place)
- DeepGlobe Building Extraction Challenge (2nd place)
- Airbus Ship Detection Challenge (2nd place)
- TGS Salt Identification Challenge (1st place)


Loss function tricks - Wing Loss

Problem: Mean squared error is sensitive to noise

Solution: Use loss function less sensitive to noise

Outcome: SOTA на facial landmark localization.

Alternatives: Smooth L1, Cauchy

Arxiv: https://arxiv.org/abs/1711.06753

Loss function tricks - combining losses

Problem: Low model accuracy

Solution: Use multiple loss functions

Outcome: Changes loss landscape, makes model concentrate on multiple aspects Example:

- BCE + 0.5 * SoftDice
- 2.0 * Focal + Lovasz
- BCE + Lovasz

Used by top-teams:

- Carvana Image Masking Challenge
- Data Science Bowl 2018
- TGS Salt Identification
- Human protein atlas classification

Dataset tricks

- Image augmentation
- Test-time augmentation
- Adversarial validation
- Label smoothing
- Pseudolabeling

Data tricks - Image Augmentation

Problem: Model tends to overfitting, limited amount of data

Solution: Apply image transformation, but keep semantic information

Outcome: Free way to extend dataset and increase its variability

GitHub: https://github.com/albu/albumentations

Data tricks - Image Augmentation

Albumentations library used by

- 3rd place: Dstl Satellite Imagery Feature Detection
- 2nd place: Safe passage: Detecting and classifying vehicles in aerial imagery
- 7th place: Kaggle: Planet: Understanding the Amazon from Space
- 1st place: MICCAI 2017: Gastrointestinal Image ANAlysis (GIANA)
- 1st place: MICCAI 2017: Robotic Instrument Segmentation
- 1st place: Kaggle: Carvana Image Masking Challenge
- 1st place: Topcoder: Urban 3D Challenge
- 1st place: Topcode: SpaceNet Roads Extraction and Routing Challenge
- 9th place: Kaggle: IEEE's Signal Processing Society Camera Model Identification
- 1st and 10th place: Kaggle: 2018 Data Science Bowl
- 2nd place: CVPR 2018 Deepglobe. Road Extraction.
- 2nd place: CVPR 2018 Deepglobe. Building Detection.
- 3rd place: CVPR 2018 Deepglobe. Land Cover Classification.
- 1st place: TGS Salt Identification.
- 7th place: APTOS2019 Blindness detection.

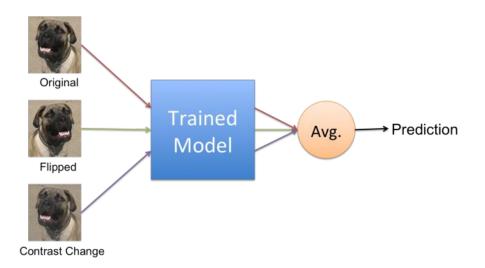
GitHub: https://github.com/albu/albumentations

Data tricks - Test Time Augmentation

Problem: We want to increase model accuracy without re-training it

Solution: Make predictions on fixed set of image transformations and average them

Outcome: Decrease predictions variance

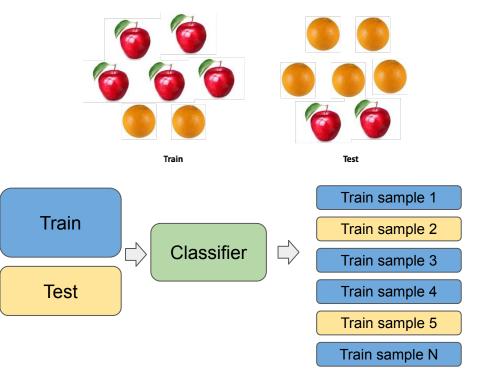

https://arxiv.org/pdf/1807.07356.pdf, https://github.com/BloodAxe/pytorch-toolbelt/blob/develop/pytorch_toolbelt/inference/tta.py

Data tricks - Test Time Augmentation

Problem: We want to increase model accuracy without re-training it

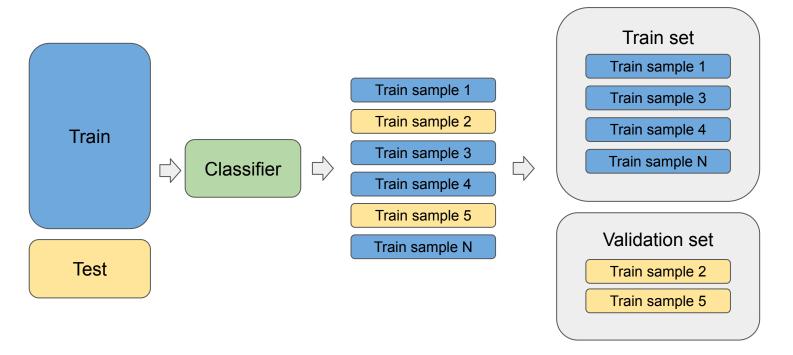
Solution: Make predictions on fixed set of image transformations and average them

Outcome: Decrease predictions variance


https://arxiv.org/pdf/1807.07356.pdf, https://github.com/BloodAxe/pytorch-toolbelt/blob/develop/pytorch_toolbelt/inference/tta.py

Data tricks - Adversarial validation

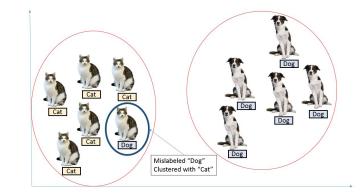
Problem: Different data distribution in train and test


Solution: Build a classifier to label train data into train/test classes.

Outcome: Distribution of validation dataset becomes closer to test

https://www.kaggle.com/konradb/adversarial-validation-and-other-scary-terms

Data tricks - Adversarial validation


https://www.kaggle.com/konradb/adversarial-validation-and-other-scary-terms

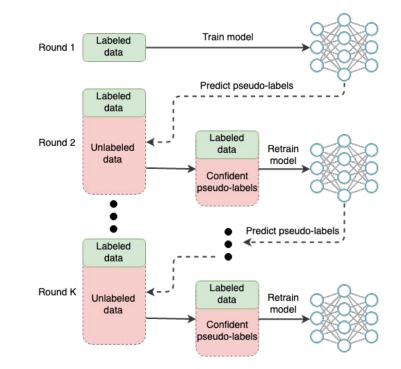
Data tricks - Label smoothing

Problem: Mislabeled samples in trainset

Solution: Instead {0,1} targets use smoothed targets: {eps, 1-eps}

Outcome: Discourages model from making overconfident predictions

	Cat	Dog	Smooth 0.2	Cat	Dog
Target	0	1	Target	0.2	0.8
Probs	0.93	0.07	Probs	0.93	0.07
BCE Loss 1.154		BCE Loss	0.923		


Data tricks - Pseudo-labeling

Problem: There are a lot of unlabeled data

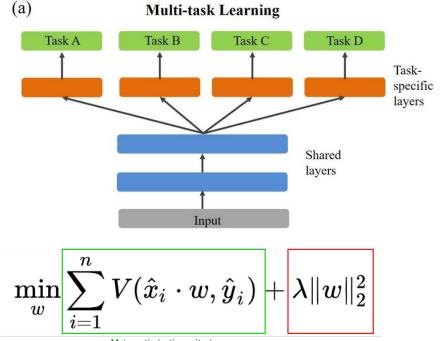
Solution: Use confident model predictions as pseudo-labels and re-train model using it

Outcome: More accurate model

Used by winners of TGS Salt Identification Challenge

Arxiv: https://arxiv.org/abs/1904.04445

Training tricks


- Multi-task learning
- Cyclic annealing
- Gradient accumulation
- Mixed-precision training
- Metric learning

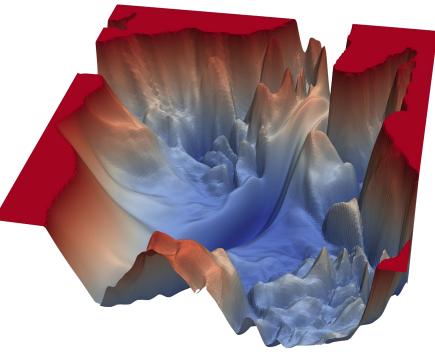
Training tricks - Multi-task learning

Problem: Model prone to overfitting to irrelevant signals

Solution: Add supplementary tasks to the model

Outcome: Less prone to overfitting. Additional outputs can be used for post-processing

Main optimization criteria

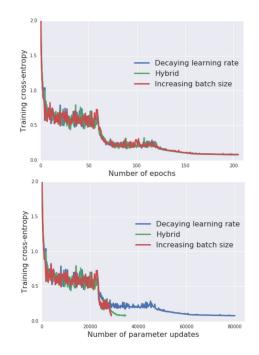

Training tricks - Cyclic annealing

Problem: SGD is slow, Adam introduces large variance

Solution: Repeat training steps:

- 1) Train model with Adam
- 2) Train model with SGD

Outcome: Faster model convergence

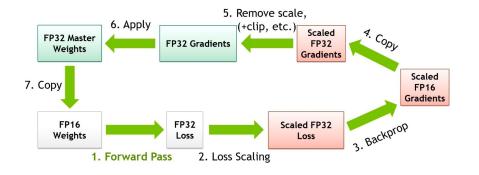


Training tricks - Gradient accumulation

Problem: Small batch size

Solution: Accumulate gradients after each batch and make optimizer step after N batches

Outcome: Simulates an effect of increased batch size for SGD, which is known to converge faster with bigger batch


https://arxiv.org/abs/1711.00489

Training tricks - Mixed precision training

Problem: Small batch size

Solution: Use fp16 instead fp32

Outcome: 2x less GPU memory used

MIXED PRECISION TRAINING

```
# Initialization
opt_level = '01'
model, optimizer = amp.initialize(model, optimizer, opt_level=opt_level)
# Train your model
...
```

https://arxiv.org/abs/1711.00489

Training tricks - Metric learning

Problem: CrossEntropy + Softmax does not enforce clear decision boundary

Solution: Train model to learn concept of distance.

Outcome: Image embeddings can be directly compared with L2 or cosine distance

http://openaccess.thecvf.com/content_CVPR_2019/papers/Sanakoyeu_Divide_and_Conquer_the_Embedding_Space_for_Metric_Learning_CVP R 2019 paper.pdf

Training tricks - Metric learning

There are many approaches

- Contrastive loss
- Triplet loss
- Center loss
- CosFace
- ArcFace
- Divide&Conquer

http://openaccess.thecvf.com/content_CVPR_2019/papers/Sanakoyeu_Divide_and_Conquer_the_Embedding_Space_for_Metric_Learning_CVP R 2019 paper.pdf

Training tricks - Metric learning

Problem: CrossEntropy + Softmax does not enforce clear decision boundary

Solution: Train model to learn concept of distance.

Outcome: Image embedding's can be directly compared with L2 or cosine distance

Used by top-teams in

- Kaggle Whale identification
- HPA protein classification challenge
- Google landmark retrieval 2019
- Google landmark retrieval 2018

http://openaccess.thecvf.com/content_CVPR_2019/papers/Sanakoyeu_Divide_and_Conquer_the_Embedding_Space_for_Metric_Learning_CVP R_2019_paper.pdf

Thank you Questions?

Eugene Khvedchenya <u>ekhvedchenya@gmail.com</u> <u>linkedin.com/in/cvtalks</u> <u>http://github.com/BloodAxe</u>