Active learning

Oleksandr Obiednikov

AI Ukraine

21 Sep 2019

Agenda

- Motivation
- What is active learning?
- Faster annotation
- Smarter annotation
- Open questions and Tips & Tricks
- Q & A

Disclaimer

Likely, everything in this talk did not happen in reality; it's just a figment of my imagination.

Coincidences with real people or events are accidental.

Please don't refer to this talk in press :-)

Few words about myself

Research SDM @ Ring Ukraine

GitHub: <u>https://github.com/alexobednikov</u> Facebook: <u>https://www.facebook.com/alexander.obednikov</u> e-mail: obednikov.alex@gmail.com

You can talk to me on the following topics:

- Putting AI into production
- CV and Audio analysis
- Metric learning and Re-ID
- Object detection and recognition.
- GANs and domain adaptation
- just chat...

Motivation

Models are the bottleneck in Machine Learning Data is the bottleneck in Machine Learning

Labeled data is the bottleneck in Machine Learning

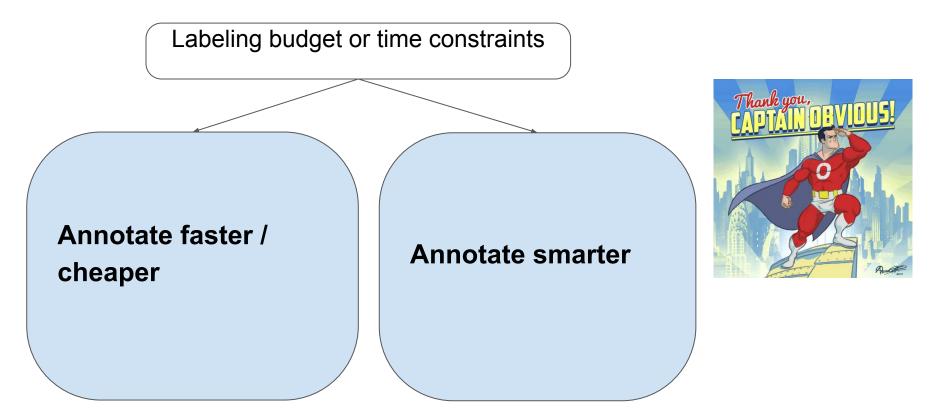
Motivation

Labeled data is the bottleneck in Machine Learning

Why?

- Most of the current "practical" ML is supervised learning
- Getting labeled data either
 - A huge amount of unlabeled data that needs to be annotated
 - Expensive to get even a single labeled example
 - Noisy annotation
 - o ...
- To tackle "long-tail" you need to have a lot of data

So what to do with it?



So what to do with it?

Labeling budget or time constraints

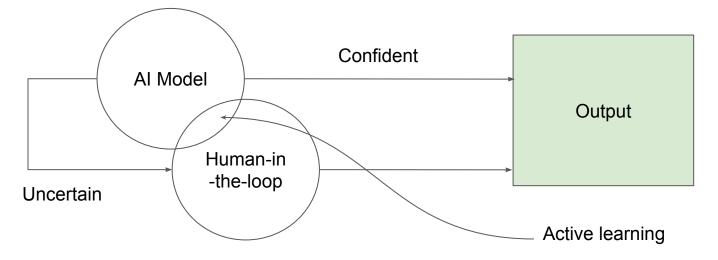
Annotate faster / cheaper

- Annotation UX
- "Machine" assisted annotation (e.g. pre-annotation via ML model, steam-like suggestions, etc)

Annotate smarter

 Select the most informative data for annotation

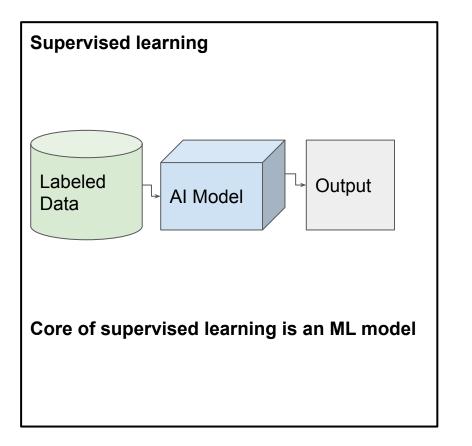
What does it have to do with active learning?

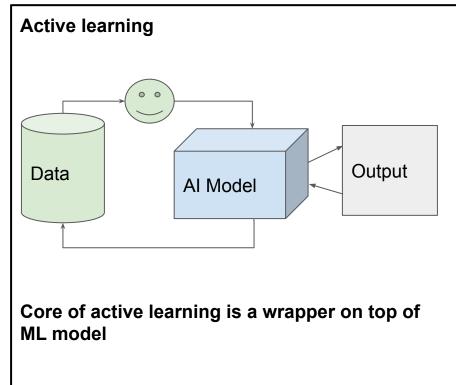


Active learning focuses on ML model / Human interactions. E.g. how to organize cooperation with human for

- 1. getting data
- 2. supporting when a model is not confident
- 3. etc

Active learning is not a model; it's strategy / protocol





"Just add some machine learning in the annotation loop" they said...

Case study: Object detection annotation on a video

Data annotation flow:

Data annotator draws bounding boxes on **key frames** \rightarrow interpolation in between \rightarrow Bingo!

Case study: Object detection annotation on a video

Modified data annotation flow:

Presentation with Huge Object detector \rightarrow Data annotator corrects bounding boxes if needed on key frames \rightarrow tracker \rightarrow interpolation in between \rightarrow **<your guess>**

Case study: Object detection annotation on a video

Modified data annotation flow:

Pre-Annotation with Huge Object detector \rightarrow Data annotator **corrects** bounding boxes **if needed** on key frames \rightarrow interpolation in between \rightarrow **Bingo! no bingo :-(**

Modified data annotation flow iteration 2:

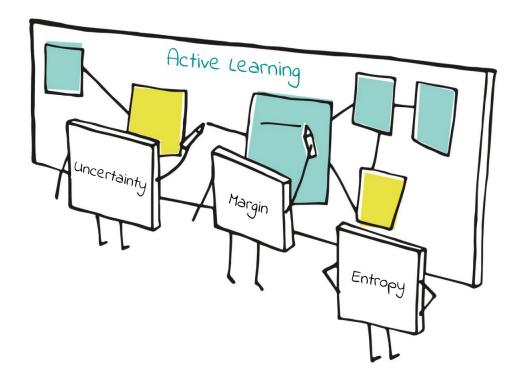
Full replication of Data Annotator pipeline by $ML \rightarrow Data$ annotator with usual flow $\rightarrow Bingo!$

Case study: Object detection annotation on a video

Lessons learned:

- Partial replacement of separate component may be not enough. Likely won't be enough.
- Thinking about annotation UX may be more beneficial than thinking about the final result.
- Data annotation speed and statistics is more about people rather than numbers.

Smarter annotation



$$u(x) = 1 - p_1(x)$$

Uncertainty

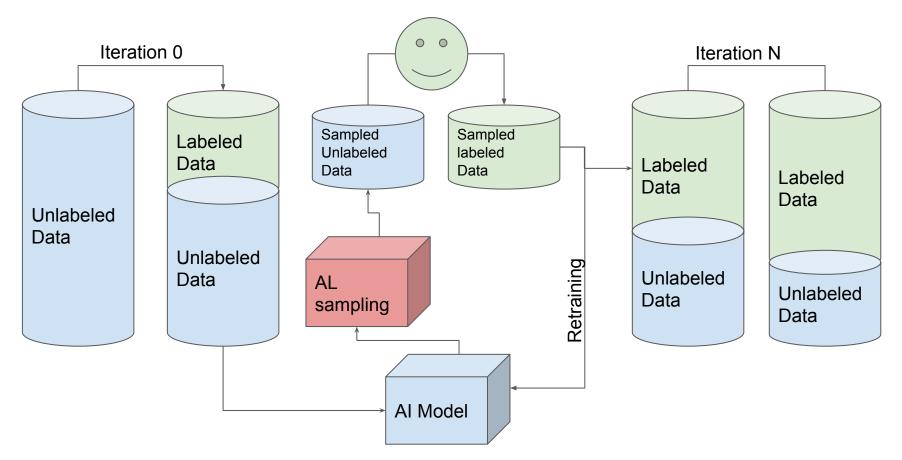
$$m(x) = p_2(x) - p_1(x)$$

$$e(x) = \sum_{i=1}^{K} p_i(x) * \log p_i(x)$$

Entropy

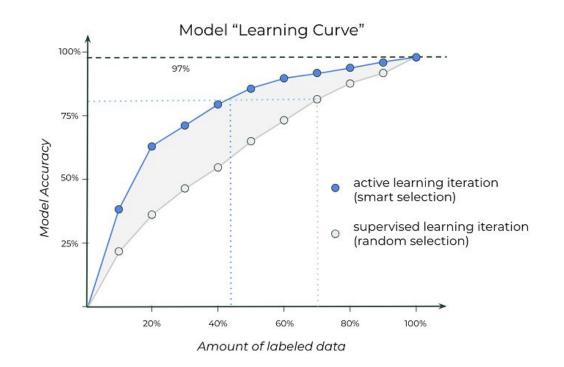
*https://towardsdatascience.com/learn-faster-with-smarter-data-labeling-15d0272614c4

Active learning step-by-step



Smarter annotation. What it gives to me?

- Reasonable result faster
- Better learning curves
- Helps with "long-tail"
- Likely outperform supervised learning



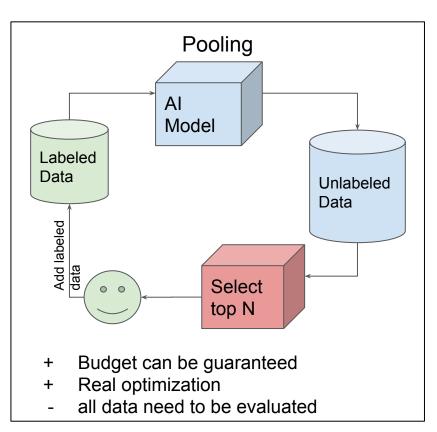
*https://www.kdnuggets.com/2018/10/introduction-active-learning.html

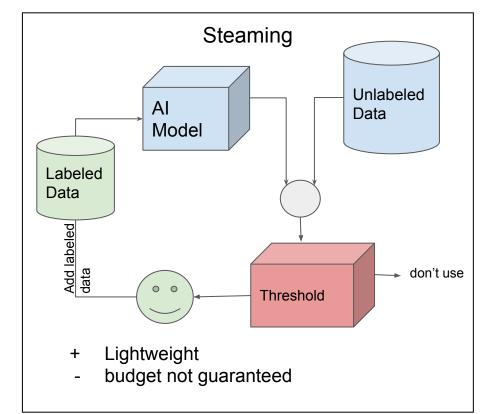
Some examples of sampling approaches

- Model uncertainty based: criteria(x) = 1 p(x)
- Max class margin based: criteria(x) = p(x | y = dog) p(x | y = cat)
- Entropy based: $criteria(x) = \sum p(x) * \log p(x)$
- Information density: $criteria(x) = 1/N * \sum ||f(x) f(xj)||$
- etc

Captain note: you cannot just annotate data points that has the largest uncertainty.

Active learning approaches





What can we tune? What are hyperparameters?

- Pooling, streaming or custom protocol?
- Sampling strategies
- Pool size for pooling and threshold for streaming
- When we want to stop

Problems and open questions

- Bias and fairness
- Easy to understand, hard to implement
- In real scenarios active learning pipelines often sometimes collapses to
 - finding incorrect labeled data
 - finding corner cases where even a human is highly unconfident

References

- https://www.kdnuggets.com/2018/10/introduction-active-learning.html
- <u>https://towardsdatascience.com/learn-faster-with-smarter-data-labeling-15d02</u>
 <u>72614c4</u>
- <u>https://arxiv.org/abs/1801.05124</u>
- http://parnec.nuaa.edu.cn/huangsj/alipy/
- https://www.youtube.com/watch?v=V33Ut36eUsY

Questions

We are hiring

https://grnh.se/a93b70881