A glance at
Reinforcement Learning. A2C.

Workshop by Oleksandr Maksymets
Research Engineer in Facebook Al Research
A-STAR team: Agents that See, Talk, Act, and Reason

My focus in FAIR:
Embodied Question Answering

Q: What color is the car?

=
44
IRUEY i titit
@@ g e m
=) ”& "ii’.
e
TURN LEFT
‘»&‘4.;;
> . \ e

Type of Deep Learning

* Supervised learning ﬂwmnment
* classification, regression A
° Unsupervised Iearning Interpreter

* clustering
% -

* Reinforcement learning
* learn from interaction w/ environment to achieve a goal

-

Agent

Action

Cart-Pole Problem

Objective: balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart

Reward: 1 at each time step if the pole is upright

—
M P 5

(177777777777 77 77 7777777777777

Atari games

Objective: win the game
State: raw screen pixels
Action: keypress in the game

Reward: score increase in a the game

1UP HIGH SCORE
278340

339

RETRO GAMES

Robot grasping of objects

Objective: grab an object and move to location
State: raw pixels of RGB camera
Action: engine robot movements

Reward: Positive if object was moved successfully,
otherwise negative

Markov Decision Process

Mathematical definition of the RL problem

* set of states S, set of actions A, initial state S,
* transition model P(s,a,s’)

e reward function R(s, a)

e goal: maximize cumulative reward in the long run

 policy: agent behavior, mapping from Sto A
n(s) or t(s,a) (deterministic vs. stochastic)

Rewards

* Episodic tasks
Episode finished after N steps

* Additive rewards
V(sg, S1, --.) = r(Sg) + r(sy) +r(s,) + ...
* Discounted rewards
V(sq, S, ...) = 1(Sg) + V*r(sq) + y?*r(s,) + ...

Value functions

e State value function: V*(s)
* expected return when starting in s and following &

 State-action value function: Q%(s, a)
* expected return when starting in s, performing a, and following ©

e Bellman equation V™(s) =) n(s,a)) P, [rgs, —I—WV”(s’)} = > 7(s,a)Q"(s,a)

Q-learning idea

e use any policy to estimate Q
e Qdirectly approximates Q* (Bellman equation)

Q(st,at) +— Q(st,at)+a [Tt-|—1 +ymaxQ(si41,a) — Q(st, at)}

Why advantage actor-critic algorithm

* Considered as strong baseline

* Optimize both Value and Policy that combines benefits of Policy or Value
based algorithms

* Has production-ready implementations

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors 0 and 6., and global shared counter T' = 0
// Assume thread-specific parameter vectors 0’ and 0,,
Initialize thread step counter ¢ < 1
repeat
Reset gradients: df < 0 and df, < 0.
Synchronize thread-specific parameters 8’ = 0 and 0., = 0,

tsta'rt =1
Get state s;
repeat

Perform a: according to policy 7(a¢|s:; 6")
Receive reward r; and new state s¢41

t<t+1
T'<T+1
until terminal s; or ¢t — tstart == tmax
R— { 0 for terminal s¢
) V(st,6y) for non-terminal s;// Bootstrap from last state
for ; € {t —]_, RN ,tsta'rt} do
R+—rmri+vR

Accumulate gradients wrt 6’: df < df + Vo log w(ai|s:;0") (R — V (s4;0,))
Accumulate gradients wrt 0.,: df, < df, + 8 (R — V (s;6,))* /6.,
end for

Perform asynchronous update of 6 using df and of 6,, using df,.
until 7' > Than

ACTION

IN REINFORCEMENT LEARNING,
AN AGENT MOVES THROUGH
STATES IN AN ENVIRONMENT BY
TAKING ACTIONS, TRYING TO
Q/%IMIZE REWARDS ALONG THE

REWARD

A2CS TAKE IN A STATE—SENSORY INPUTS IN
CRANBERRY'S CASE—AND GENERATE TWO OUTPUTS:

A A QJ/ V/§;

1) AN ESTIMATE OF HOW
MANY REWARDS THEY 2) A RECOMMENDATION

EXPECT TO GET FROM THAT OF WHAT ACTION TO
POINT ONWARDS, THE STATE / TAKE, THE POLICY

VALUE. N Y

THE “CRITIC* BN

WSMEG[éLENl
) THIS WILL BE A FRUITFUL g{i%"s,.ho“
DAY OF FORAGING. | ERE LS Do
) BET I'LL GATHER 20 ' TOWARDS “A*
{ REWARD POINTS BEFORE £
SUNSET TODAY. Ll A: 80%
(e = | B:10%
v<s> 20 } Cux

7\
V(5)

POLICY

A DEEP RL MODEL IS AN INPUT-OUTPUT MAPPING MACHINE
JUST LIKE ANY OTHER NN CLASSIFICATION OR REGRESSION
MODEL. INSTEAD OF MAPPING PICTURES OR TEXT TO
CATEGORIES, A DEEP RL MODEL MAPS STATES TO ACTIONS
AND/OR STATES TO STATE VALUES. AN A2C DOES BOTH!

Model definition in Pytorch

class ActorCritic(nn.Module): # only the Actor head
def init (self):
super (ActorCritic, self). init ()
self.linearl = nn.Linear (N INPUTS, 64)
self.linear2 = nn.Linear(64, 128)
self.linear3 = nn.Linear (128, 64)

def get action probs(self, x):
X = self (Xx)
action probs = F.softmax(self.actor(x))
return action probs

Only the Critic head

def get state value(self, x):
X = self (x)
state value = self.critic(x)
return state value

self.actor = nn.Linear(64, N ACTIONS)
self.critic = nn.Linear(64, 1)

In a PyTorch model, you only have to defir
def forward(self, x):
x = self.linearl(x)

X = F.relu(x) # Both heads

x = self.linear2(x) def evaluate actions(self, x):

x = F.relu(x) x = self(x)

x = self.linear3(x) action probs = F.softmax(self.actor(x))
X = F.relu(x) state values = self.critic(x)

return x return action probs, state values

THIS SET OF STATE-ACTION-REWARD
MAKES UP A SINGLE OBSERVATION.
SHE'LL RECORD THIS ROW OF DATA IN
HER JOURNAL BUT SHE'S NOT GOING TO
REFLECT ON IT JUST YET.

SHE'LL FILL
THESE
OUT WHEN

SHE
STOPSTO
REFLECT.

\

A ~ . >
CRANBERRY REPEATS THE PROCESS AGAIN. o
\ FIRST SHE TAKES IN HER SURROUNDINGS AND GENERATES

VCS) AND AN ACTION RECOMMENDATION N e

/4
// ON CHOICES ALL

\ THIS GLEN LOOKS K PRETTY
!

PRETTY STANDARD. § AR, ['LL JUST GO
V(S) =19. HC” [GUESS,

A: 33%

B: 33%

THEN SHE TAKES AN ACTION § 2
= N4

SN TN,
i Il
- SN
N\

-—

——

RECEIVES A REWARD

AND RECORDS THE
OBSERVATION.

N R R AL Hll H -
SHE REPEATS THE PROCESS AGAIN) |

U I H\'LJ x

Loop of observation collection

state = env.reset()
finished games = 0

while finished games < N GAMES:
states, actions, rewards, dones = []1, [1, [1, []

Gather training data
for i in range(N _STEPS):
s = Variable(torch.from numpy(state).float().unsqueeze(0))

action probs = model.get action probs(s)

action = action probs.multinomial(num samples=1).data[0][0].item()

next state, reward, done, @ = env.step(action)

states.append(state); actions.append(action); rewards.append(reward); dones.append(done)

if done: state = env.reset(); finished games += 1
else: state = next state

AFTER COLLECTING THREE OBSERVATIONS,
CRANBERRY STOPS TO REFLECT.

OTHER FAMILIES OF MODEL WAIT
UNTIL THE VERY END OF THE DAY

BEFORE REFLECTING (MONTE
CARLO) WHILE OTHERS REFLECT
AFTER EVERY STEP (ONE-STEPS).

BEFORE SHE CAN TUNE HER INNER CRITIC, CRANBERRY NEEDS
TO CALCULATE HOW MANY POINTS SHE WOULD ACTUALLY GO ON
TO RECEIVE FROM EACH GIVEN STATE.

BUT CRANBERRY IS GOING TO STOP THIS CLEARING LOOKS
AND REFLECT MANY TIMES BEFORE DECENT, I'D SAY I'LL
THE DAY IS OVER. SHE WON'T KNOW [GATHER 48 MORE FOX
HOW MANY POINTS SHE'LL ACTUALLY \ POINTS BEFORE THE
GO ON TO RECEIVE FROM EACH STATE (DAY IS DONE.

UNTIL THE END OF THE GAME BECAUSE =
THE END OF THE GAME IS HOURS o
AWAY!

THIS IS WHERE SHE DOES SOMETHING
REALLY CLEVER—CRANBERRY FOX

ESTIMATES HOW MANY POINTS SHE'LL
GO ONTO GET FROM THE LAST STATE
IN THE SET. LUCKILY, SHE HAS A
STATE-ESTIMATOR BUILT RIGHT
IN—HER CRITIC!

WITH THIS ESTIMATE IN
HAND, CRANBERRY CAN
CALCULATE THE “TRUE”
VALUES OF THE PRECEDING
STATES

=3 =Yy

REWARDS ARE OFTEN DISCOUNTED TO REFLECT THE FACT THAT A
REWARD NOW IS BETTER THAN A REWARD IN THE FUTURE. TO KEEP
THINGS SIMPLE, CRANBERRY ISN'T DISCOUNTING HER REWARDS.

| | WAS WAY OFF FOR STATE 1

COMPARE HER STATE-VALUE PREDICTIONS TO THEIRACTUAL " 2 " %5 € %)
VALUES. SHE USES THE DIFFERENCE BETWEEN THESE NUMBERS 2 ¥ “0 =3 ®

TO HONE HER PREDICTION SKILLS. EVEN THREE STEPS INTO THE 3 2

DAY, CRANBERRY HAS GATHERED VALUABLE EXPERIENCES y A
WORTH REFLECTING ON.

IT MAY SEEM CRAZY THAT CRANBERRY IS ABLE TO USE HER
ESTIMATE OF VCS) AS THE GROUND TRUTH TO COMPARE HER
OTHER PREDICTIONS AGAINST. BUT ANIMALS CUS INCLUDED) DO
THIS ALL THE TIME! IF YOU FEEL LIKE THINGS ARE GOING WELL,
]Ngebé%ED TO WAIT TO REINFORCE THE ACTIONS THAT LED YOU

=

AHA! NEXT TIME | SEE
FEATHERS LIKE THAT, |

KNOW TO INCREASE VCS).

Calculation of actual rewards and reflect/train
implementations

def calc_actual state values(rewards, dones):
R =1]
rewards.reverse()

If we happen to end the set on a terminal state, set next return to zero
if dones[-1] == True: next return = 0

If not terminal state, bootstrap v(s) using our critic
else:
s = torch.from numpy(states[-1]).float().unsqueeze(0)
next return = model.get state value(Variable(s)).data[0][0]

Backup from last state to calculate "true" returns for each state in the set
R.append(next return)
dones.reverse()
for r in range(l, len(rewards)):
if not dones[r]: this return = rewards[r] + next return * GAMMA
else: this return = 0
R.append(this return)
next return = this return

R.reverse()
state values true = Variable(torch.FloatTensor(R)).unsqueeze(1l)

return state_ values_true

def reflect(states, actions, rewards, dones):

Calculating the ground truth "labels" as described above
state values true = calc_actual state values(rewards, dones)

s = Variable(torch.FloatTensor(states))
action probs, state values est = model.evaluate actions(s)
action log probs = action probs.log()

a = Variable(torch.LongTensor(actions).view(-1, 1))
chosen action log probs = action log probs.gather(1l, a)

advantages = state_values true - state values est
entropy = (action probs * action log probs).sum(1l).mean()
action gain = (chosen action log probs * advantages).mean()

value loss = advantages.pow(2).mean()
total loss = value loss - action gain - 0.0001 * entropy

optimizer.zero grad()

total loss.backward()
nn.utils.clip grad norm(model.parameters(), 0.5)
optimizer.step()

CRANBERRY REPEATS THE SAME PROCESS ALL DAY,
GATHERING THREE STATE-ACTION-REWARD OBSERVATIONS
AND REFLECTING ON THEM.

oD

O/O\@DO 5

From A2C to A3C

STATE

(RS
[

» » » ® »

EACH SET OF THREE OBSERVATIONS IS A TINY, AUTOCORRELATED
MINIBATCH OF LABELLED TRAINING DATA. TO REDUCE THIS
AUTOCORRELATION, MANY A2CS RUN MULTIPLE AGENTS IN
PARALLEL, STACKING THEIR EXPERIENCES TOGETHER BEFORE
PUSHING THEM INTO A SHARED NEURAL NETWORK.

THE DAY IS ALMOST OVER. ONLY TWO STEPS TO GO.

AS WE SAW EARLIER, CRANBERRY'S ACTION RECOMMENDATIONS
ARE EXPRESSED AS PERCENTAGE CONFIDENCES ABOUT HER
OPTIONS. INSTEAD OF SIMPLY TAKING THE HIGHEST-CONFIDENCE
CHOICE, CRANBERRY SAMPLES FROM THIS ACTION DISTRIBUTION.
THIS ENSURES SHE DOESN'T ALWAYS SETTLE FOR SAFE BUT
POTENTIALLY MEDIOCRE ACTIONS.

Get sampled action from model for current state:

action probs = model.get action probs(s)
action = action probs.multinomial (num samples=1).data[0][0].item()

¥ A 40% B: 40% C: 20% ¢
8 MICHT REGRET IT, BUT. 3

SOMETIMES EXPLORING UNKNOWN THINGS
CAN LEAD TO EXCITING NEW DISCOVERIES...

C L ,
¥R P

LOW HIGH
ENTROPY ENTROPY

TO FURTHER ENCOURAGE EXPLORATION, A VALUE CALLED
ENTROPY IS SUBTRACTED FROM THE LOSS FUNCTION. ENTROPY
REFERS TO THE “SPREAD” OF THE ACTION DISTRIBUTION.

Total loss encourages exploration

entropy = (action probs * action log probs).sum(l).mean()
action gain = (chosen action log probs * advantages).mean()
value loss advantages.pow(2) .mean()

total loss = value loss - action gain - 0.0001 * entropy

+51 LOOKS LIKE THE GAMBLE PAID OFF!
‘ Q ﬂ
,.////_/ “

2\

ORDID IT?

SOMETIMES AN AGENT WILL FIND ITSELF IN A STATE WHERE ALL
ACTIONS LEAD TO NEGATIVE OUTCOMES. A2CS, HOWEVER, ARE
EXCELLENT AT MAKING THE MOST OF BAD SITUATIONS.

AS THE SUN SETS,
CRANBERRY
REFLECTS ON THIS
LAST SET OF
DECISIONS.

WE TALKED ABOUT HOW CRANBERRY TUNES HER INNER
CRITIC. BUT HOW DOES SHE ADJUST HER INNER ACTOR? HOW
DOES SHE LEARN TO MAKE SUCH REFINED CHOICES?

A SIMPLE POLICY GRADIENT FOX WOULD LOOK AT THE
ACTUAL RETURNS FOLLOWING AN ACTION AND TUNE HER

POLICY TO MAKE GOOD RETURNS MORE LIKELY.

LIKELY IN THE FUTURE...

V($)=-100

V(5)=-20
—(— @

ADVANTAGE=80

LOOKS LIKE MY POLICY FROM THAT
STATE LED TO LOSING 20 POINTS, |
GUESS | BETTER MAKE “C™ LESS

BUT WAIT!
IT'S NOT FAIR TO PLACE THE BLAME
ON ACTION C. THAT STATE HAD AN

ESTIMATED VALUE OF 100, SO TAKING
“C” AND ENDING UP WITH -20 WAS

ACTUALLY A RELATIVE IMPROVEMENT
OF 80! | SHOULD MAKE “C” MORE
LIKELY IN THE FUTURE.

INSTEAD OF TUNING HER POLICY IN RESPONSE TO THE
TOTAL RETURNS SHE GOT BY TAKING ACTION C, SHE TUNES
HER ACTIONS TO THE RELATIVE RETURNS OF TAKING
ACTION C. THIS IS CALLED THE “ADVANTAGE".

WHAT WE CALLED THE ADVANTAGE IS JUST THE ERROR. AS
THE ADVANTAGE, CRANBERRY USES IT TO MAKE ACTIONS
THAT WERE SURPRISINGLY GOOD MORE LIKELY. AS THE
ERROR, SHE USES THE SAME QUANTITY TO NUDGE HER INNER
CRITIC TO MAKE BETTER ESTIMATIONS OF STATE VALUES.

ACTOR USES ADVANTAGE CRITIC USES ERROR

= “
—, ‘ 1

=

& oy
. O =

\(')VSTVVQET{}AETR"}’Q%E,D IN THE FIRST PLACE? |

PROBABLY SHOULDN'T
R I e HAVE ESTIMATED THAT
GOOD IDEA. SDT[I)\TE AS NEGATIVELY AS |

NOW WE CAN SHOW HOW TOTAL LOSS IS COMPUTED—THIS IS
THE FUNCTION WE MINIMIZE TO IMPROVE OUR MODEL

TOTAL LOSS = ACTION LOSS + VALUE LOSS - ENTROPY.
NOTIECLE WE'RE SHOVING GRADIENTS OF THREE QUALITATIVELY

DIFF
EFFIC

RENT TYPES BACK THROUGH A SINGLE NN. THIS IS
ENT BUT IT CAN MAKE CONVERGENCE MORE DIFFICULT.

LIKE ALL ANIMALS, AS CRANBERRY MATURES SHE'LL HONE HER
ABILITY TO PREDICT STATE VALUES, GAIN INCREASING

CONFIDENCE IN HER ACTION CHOICES AND FIND HERSELF
SURPRISED LESS OFTEN BY REWARDS.

Evaluation

def test model(model):
score = 0
done = False
env = gym.make(' 'CartPole-v0')

state = env.reset()
global action probs What is different compare to experience collection?

while not done:

score += 1
s = torch.from numpy(state).float().unsqueeze(0)

action probs = model.get action probs(Variable(s))

_, action index = action probs.max(1l)
action = action index.item()
next state, reward, done, thing = env.step(action)

state = next state
return score

1 day of training

2 days of training

Final result for A3C

RL in real world

* Traffic Light Control

* Robotics

* Web Systems

* Chemistry

* Personalized Recommendations

The RL Intro book

Reinforcement .
Learning

Richard Sutton, Andrew Barto
Reinforcement Learning,
An Introduction

http://www.cs.ualberta.ca/
~sutton/book/the-book.html

Y
> 4
Ll
Ll
-
b

Sources and kudos:

* Richard Sutton, Andrew Barto Reinforcement Learning, An
Introduction.

* Rudy Gilman, Kathrine Wang Intuitive RL intro to advantage actor
critic (A2C)

* Mnih Badia “Asynchronous Methods for Deep Reinforcement
Learning”

* Peter Bodik RAD Lab, UC Berkeley Reinforcement Learning Tutorial

