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Abstract
Cell phenotyping in microscopy images plays an important role in various biological and medical applications,

e.g. cancer diagnostics. A vast variety of conditions, magnification and image modalities make this task a very
challenging problem for classical image recognition methods. At the same time, deep learning has been shown
to perform well under these conditions. Here we use a convolutional neural network to classify cell cultures. We
show that deep learning outperforms traditional machine learning trained on handcrafted features extracted by the
PerkinElmer software.

Introduction
Goals and Questions
1. How well can individual cells be classified into seven cell lines?
2. How do neural networks perform compare to «traditional» machine learning methods (Random

Forest) trained on standard features dataset?
3. How does the same neural network architecture perform on different image modalities (fluores-

cence, brightfield)?
4. How important is the context around nuclei for classification?

The main motivation behind these questions is to help researchers who work with cell cultures.
Automated cell image analysis could potentially reduce the amount of routine and speed up the
studies.

Data Description
The dataset consisted of 3024 images
1080 ⇥ 1080 with 70 - 200 cells each in
fluorescent and brightfield modalities. All
cells on each image belong to one of the
seven cell lines listed in Table 1. Examples
of images are shown in Figure 1. For each
image there was a nuclei segmentation mask
and a dataset of features produced with
PerkinElmer software [1].

Table 1: Dataset description

Cell line Description

A549 human adenocarcinomic
alveolar basal epithelial

HT1080 human fibrosarcoma
HeLa human cervical cancer

HepG2 human liver cancer
MCF7 human breast cancer

MDCK canine kidney
NIH3T3 mouse embryonic fibroblast

Figure 1: Example of a cell plate. Fluorescent modality is on the left (nuclei highlighted), brightfield is on the right

Data Preparation
Segmentation masks were used to extract individual cell frames of size 70 ⇥ 70 and assign to them
their respective features. Frames were split between train, meta-train and test sets as presented in
Figure 2. Validation set was taken from the train set. All of the datasets were made balanced and of
smaller size to speed up training.

432 images
(70-200 cells each)

346 (80%)
Train set

86 (20%)
Test set

> 80000
cell frames

> 18000
cell frames

20000 train

20000 meta-train

5000 test

Figure 2: Data preparation pipeline for each of the cell lines

To check how the surrounding context affects the performance of neural network, cell frames were
cropped with eight different border distances (0, 1, 3, 5, 10, 15, 20 and 30 px) calculated from the cell
bounding box. Cropping procedure is illustrated in Figure 3.

Figure 3: Preparing cell frames with various size of the surrounding context. Here we take equal amount of surrounding
context (yellow rectangle) from the borders of the cell bounding box (red rectangle); the figure shows the cropping results
for all used sizes of context.

Network architecture

Here we used altered Dürr and Sick architecture [2]
proposed for single-cell phenotype classification. The
number of dense layers was reduced compared to the
original version of the architecture in order to prevent
overfitting. The network structure is summarized in
Table 2. The network and learning parameters are listed
below:

• Implemented with Keras Python library using Ten-
sorflow backend

• Batch normalization after convolutional and dense
layers with batch size 8

• Scheduled learning rate (from 5⇥ 10�4 to 1.5⇥ 10�5)
• 25 epochs
• L2 regularization (l = 5 ⇥ 10�5)
• Adam optimizer

Table 2: Architecture of the Convolutional
Neural Network [2]. Each row represents
network layer in top-down order.

Layers Output
Input 70 ⇥ 70 ⇥ 1
Conv 2D (3x3) 68 ⇥ 68 ⇥ 32
Conv 2D (3x3) 66 ⇥ 66 ⇥ 32
Max pool 2D (2x2) 33 ⇥ 33 ⇥ 32
Conv 2D (3x3) 31 ⇥ 31 ⇥ 64
Conv 2D (3x3) 29 ⇥ 29 ⇥ 64
Max pool 2D (2x2) 14 ⇥ 14 ⇥ 64
Conv 2D (3x3) 12 ⇥ 12 ⇥ 128
Conv 2D (3x3) 10 ⇥ 10 ⇥ 128
Max pool 2D (2x2) 5 ⇥ 5 ⇥ 128
Dense 100
Dropout (0.2) 100
Dense 50
Output 7

We compare the network to the Random Forest trained on features extracted from respective cells
with the PerkinElmer software. Random Forest classifier was tuned with parameter grid search and
recursive feature elimination.

Results
We found the network performance to be dependent on the size of context around the nuclei. Learn-
ing curves are presented in Figure 4. In general the network trained on the fluorescent images are able
to classify cell lines more accurately than the network trained on the brightfield. However, average
of these predictions was even better as shown in Figure 5. We also trained an additional Random
Forest as a meta-model over neural network predictions, but it showed insignificantly better results
than the simple averaging. As 1-vs-1 task we modeled binary classification by taking all possible
combinations of classes and classifying it with the same network. It helps to estimate the classifier
performance on co-cultures.

a: Fluorescence train accuracy b: Fluorescence val accuracy c: Brightfield train accuracy d: Brightfield val accuracy

Figure 4: Learning curves

a: Seven-class classification b: 1-vs-1 classification

Figure 5: Classifier performance for two types of classification

We explored prediction confidence distributions for correct and incorrect predictions for all of the
trained models. The plot for the best ensemble classifier is presented in Figure 6. Predictions were
significantly more confident when they were correct. This fact gives an opportunity to filter out
low-confidence predictions for manual inspection.

Figure 6: Confidence distributions for ensemble predictions. Each pair of violin plots shows how confident the classifier
is about any particular cell line in its correct and incorrect predictions
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To check how the surrounding context affects the performance of neural network, cell frames were
cropped with eight different border distances (0, 1, 3, 5, 10, 15, 20 and 30 px) calculated from the cell
bounding box. Cropping procedure is illustrated in Figure 3.
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We explored prediction confidence distributions for correct and incorrect predictions for all of the
trained models. The plot for the best ensemble classifier is presented in Figure 6. Predictions were
significantly more confident when they were correct. This fact gives an opportunity to filter out
low-confidence predictions for manual inspection.
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is about any particular cell line in its correct and incorrect predictions
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Brain is a vital part of all higher organisms, but mechanisms behind its functions
remain poorly understood. It is a structured organ, with a variety of cell types ranging
from neurons to immune cells non-uniformly distributed across space.

Localizing the different cell types and quantifying their gene expression patterns
from microscopy images is the principal way to gain novel insights into the organization
and inner workings of the brain. In particular, the challenging morphology of astrocytes
makes them one of the most complex types of cells to identify. While a lot of manual
work is currently needed to reliably segment astrocytes from images, the scale of data
produced with modern microscopes renders this approach impractical. Here, we present
an automated segmentation approach for brain microscopy images using deep learning.

We implemented and compared the performance of U-Net [1], Mask R-CNN [2] and
SegNet [3] models on RNA fluorescence in situ hybridization images from mouse brain
slices. The employed architectures are capable of reliably detecting and segmenting
astrocytes, but have a high false positive rate, likely due to limitations of the training
data.

Abstract

Semantic segmentation is one of the key problems in Computer Vision area. Identifying
the different types of cells from brain images helps biologist to understand its inner
mechanisms. Currently, it’s done either via manual examination or semi-automated
approaches that consume a lot of experts time and effort. Astrocytes are one of the
most challenging types of the brain cells to segment due to their complex and
heterogeneous structure. Here we present a fully-automated pipeline for segmenting
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Models description
U-Net

SegNet

Mask R-CNN

dapi glast irak2id3chrd1 neun antibody

dapi - marks the nuclei of astrocytes 
and other cells

glast - marker of astrocytes, to be used 
for segmentation

chrd1 - this marker is expressed as a 
spatial gradient across astrocytes, 
enriched in upper layers

id3 - this marker is expressed as a spatial gradient 
across astrocytes, enriched in deep layers and the 
most superficial layer. 

irak2 - this marker is expressed in most astrocytes, 
slight spatial enrichment in upper layer astrocytes

neun antibody - marker of neurons

Channels description

References
[1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox: U-Net. Convolutional

Networks for Biomedical Image Segmentation. arXiv:1505.04597v1 [cs.CV] 18 May 2015
[2] Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick. Mask R-CNN.

arXiv:1703.06870v3 [cs.CV] 24 Jan 2018
[3] Vijay Badrinarayanan, Alex Kendall , Roberto Cipolla, Senior Member, IEEE. SegNet: A

Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
arXiv:1511.00561v3 [cs.CV] 10 Oct 2016

Mean average precision at different intersection over union (IoU) thesholds metric 
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Interpretation of the results
Our experiments show that adding more channels into training data does not seem to
significantly influence the model performance (Figure 5). Overall, U-Net has reached
0.21 IoU, SegNet – 0.18 and Mask R-CNN – 0.147.In general results proved CNN are able
to segment the astrocytes in the microscopy images. However, all models produce high
number of false positives that can be a result of insufficient quality and quantity of
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Figure 4: Three architectures used in this work, U-Net, SegNet and Mask R-CNN. All models have been trained
using the same hyper-parameters, e.g. learning rate, regularization strength and optimization algorithm.

Figure 1: Structure of the data used in the study, one image in the dataset constitutes of 6 channels: dapi, glast,
chrd1, id3, irak2 and neun antibody.

Figure 2: Example of train and test sets images with ground truth segmentation.

Figure 3: Datasets used for training. Number of images in each dataset corresponds to the number of merged
channels. The datasets were named based on indexes of the channels that were used to generate them.

Figure 6: Segmentation example of U-Net, SegNet and Mask R-CNN. White color – ground truth segmentation.
Green color – neural networks prediction. All models produce high number of false positive segmentations.
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