

Human Cells

Neuron

Smooth muscle cells

Columnar epithelial cells

White blood cells

https://www.dreamstime.com/

Mitotic cell count is one of the key diagnostic markers of the disease

Histology images

Mitotic Cells

Fluorescent images

Current Best Method for Microscopy Image Analysis?

Current Best Method for Microscopy Image Analysis

Thousand man-hours are spent manually looking at images, counting and classifying cells

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Classical Microscopy Image Analysis Pipeline

Preprocessed Image

Preprocessed Image

Magical Threshold

Background	Nuclei	

Preprocessed Image

Segmentation mask

Preprocessed Image

Segmentation mask

Preprocessed Image

Segmentation mask

Preprocessed Image

Preprocessed Image

Segmentation mask

Preprocessed Image

Segmentation mask

Multi-instance mask

Original Image

Original Image

Preprocessed Image

Segmentation mask

Thresholding •••••

Can Deep Learning step in?

Relevant features

nuclei #1: blue, size 29px; nuclei #2: red, size 25px; nuclei #3: pink, size 22px; nuclei #4: yellow, size 19px; nuclei #5: green, size 18px; nuclei #6: purple, size 16px; nuclei #7: orange, size 14px; Extracting features

Multi-instance mask

Preprocessed Image

Segmentation mask

Thresholding

.

Can Deep Learning step in?

Approach II

Approach III

Training DeepCell

Training data

Segmentation

DeepCell

Training DeepCell

Extracted **patch** from original image used as input

Segmentation

DeepCell

Training DeepCell

Training data

Extracted **patch** from original image used as input

Segmentation

DeepCell

Training DeepCell

Extracted **patch** from original image used as input

Class of the central pixel is used as label

Training data

Segmentation

DeepCell

Training DeepCell

DeepCell

patch #2 patch #1

Training data

Segmentation

Training DeepCell

Training data

Segmentation

Training labels

DeepCell

Training DeepCell

Training data

. . .

Segmentation

Training labels

DeepCell

. . .

Test image

Test data

Predicting with DeepCell

Predicted segmentation

?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

Predicted segmentation

?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

Predicting with DeepCell Predicted segmentation

Test image

patch #1

Test data

DeepCell

prediction #1

1

Test image

Test data

Predicting with DeepCell Predicted segmentation

Test image

Test data

. . .

Predicting with DeepCell

Predicted segmentation

1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	1	1	1	1	0	0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	1	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	0	0	1	1	1	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	1	1	1	1	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	1	1	1	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	1	1	1	0	0	0	0	0	0	0

DeepCell

Preprocessed Image

DeepCell (D. Van Valen et al.)

Segmentation mask

Thresholding

.

Can Deep Learning step in?

Approach II

Approach III

Binary mask

Binary mask

U-Net (O. Ronneberger et al.)

Preprocessed Image

Pixel wise classification

DeepCell (D. Van Valen et al.)

Segmentation mask

Can Deep Learning step in?

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r cnn. arXiv preprint arXiv:1703.06870.

1. Proposes bounding boxes for objects (Rol)

1. Proposes bounding boxes for objects (Rol)

2. Filters out bad Rols

- 1. Proposes bounding boxes for objects (Rol)
- 2. Filters out bad Rols
- 3. For each Rol builds a mask

By Daniel Majoral

- 1. Proposes bounding boxes for
- 3. For each Rol builds a mask

Preprocessed Image

Pixel wise classification

DeepCell (D. Van Valen et al.)

Segmentation mask

.

Can Deep Learning step in?

Mask R-CNN (K. He et al.)

Preprocessed Image

Pixel wise classification

DeepCell (D. Van Valen et al.)

Segmentation mask

Approach II

Spot Nuclei. Speed Cures.

Nuclei are distinctive in images and can help researchers locate cells

Nuclei take many shapes across
the body's 30 trillion cells

Spot Nuclei. Speed Cures.

Imaging

Natural light

Fluorescent

9 8

3.0

68 68

1

Fluorescent

1

9 🚯

 $\mathbf{c}(\mathbf{0})$

6.6

8

-

0

62

039

fluorescent images

Fluorescent

We know how to segment fluorescent images

Brightfield

Can we segment **brightfield** images?

Ground truth

Brightfield image

Ground truth

Predicted

Convolutional Neural Networks for Cellular Segmentation by Sten-Oliver Salumaa

Sten-Oliver Salumaa^{1,*}, Dmytro Fishman^{1,*}, Daniel Majoral¹?, ...?, Kaupo Palo², Jaak Vilo¹, Leopold Parts^{1,3,@}

Segmenting cell nuclei from brightfield images with deep convolutional neural networks

Will be added to the PerkinElmer Harmony

Harmony[®]

Image Analysis Results

Summary

-		
Prop	erhee	Nuclea
TUP	CI II CO	TARGET

		1 A A	
N n	era	Ph	enty
vμ	oru		CITIA

😤 РКІ

mage Control	4
Controls	
Coloring:	Highlight
Show Scale:	
Channels	
Brightfield	
Color:	Gray
4313	6932
1.50	
Auto Contrast:	
HOECHST 3334	12
Nuclei Predict	ion 📃 💌
Regions	
Nuclei	
Color:	Rainbow
Style:	Body 💌
Overlays	
Highlighted O	bjects 🔽 💌

late												
Assay:	1			_			_	_				
SUAR	A	lea	51	ure	me	nt	1.2	wo	t	2		
.αγci, 1.2	2 3 4	5	6	7 8	8 9	10	11	12 13	14	15	16	í
	T			-								
0												
E								3				
G					-			6				
H												
j 🗖												
î 🗖												
N N												
	_			_			1.04					
° -												
° ₽ Vell												
¢ell												
° ⊟												
¢ell												
¢ell												

Original Image (Fluorescent)

Preprocessed Image

Segmentation mask

Thresholding

.

Can be improved by Deep Learning

Relevant features

nuclei #1: blue, size 29px; nuclei #3: pink, size 22px; nuclei #4: yellow, size 19px; nuclei #5: green, size 18px; nuclei #6: purple, size 16px; nuclei #7: orange, size 14px; Extracting features

Multi-instance mask

Original Image

Preprocessed Image

Segmentation mask

Thresholding

.

Can be improved by Deep Learning

Multi-instance mask

Cells can be of different types

Madin-Darby Canine Kidney (MDCK) cells

Henrietta Lacks (HeLa) cells

Liver cancer cell line

Henrietta Lacks (HeLa) cells

Madin-Darby Canine Kidney (MDCK) cells

Alveolar basal epithelial (A549) cells

Henrietta Lacks (HeLa) cells

Fibrosarcoma (HT1080)

Mouse embryo tissue (NIH3T3)

Feature dataset

colour: blue diameter: 25px; square: 200 px; roundness: 0.9;

200 more...

Feature dataset

colour: red diameter: 19 px; square: 165 px; roundness: 0.87; 200 more...

Feature dataset

Cell frames dataset

Convolutional Neural Network (CNN)

Cell frames dataset

Feature dataset

Both models try to predict a correct cell type (1 out of 7)

Convolutional Neural Network (CNN)

		_
	 	 •
		_

0

Size of surrounding context, px

		_
		_

0

Size of surrounding context, px

		_
		_

Size of surrounding context, px

		_
		_

Size of surrounding context, px

		_
		_

Random Forest

Size of surrounding context, px

Fluorescence

Fluorescence

Brightfield

Random Forest

Fluorescence

Brightfield

Ensemble Fluorescence

Brightfield

Random Forest

Fluorescence

Brightfield

Original Image

Preprocessed Image

Segmentation mask

Thresholding

.

Can be improved by Deep Learning

Multi-instance mask

Original Image

Preprocessed Image

Segmentation mask

Thresholding

.

Can be improved by Deep Learning

• Multi-instance mask

Cell Phenotyping with Convolutional Neural Networks

Mikhail Papkov¹, Kaupo Palo², Leopold Parts^{1,3}, Dmytro Fishman^{1,4}

¹ Institute of Computer Science, University of Tartu, ² PerkinElmer, Inc., ³ The Wellcome Sanger Institute, ⁴ Quretec Ltd

Abstract

Cell phenotyping in microscopy images plays an important role in various biological and medical applications, e.g. cancer diagnostics. A vast variety of conditions, magnification and image modalities make this task a very challenging problem for classical image recognition methods. At the same time, deep learning has been shown to perform well under these conditions. Here we use a convolutional neural network to classify cell cultures. We show that deep learning outperforms traditional machine learning trained on handcrafted features extracted by the PerkinElmer software.

Introduction

Goals and Questions

- 1. How well can individual cells be classified into seven cell lines?
- 2. How do neural networks perform compare to «traditional» machine learning methods (Random Forest) trained on standard features dataset?
- 3. How does the same neural network architecture perform on different image modalities (fluorescence, brightfield)?
- 4. How important is the context around nuclei for classification?

The main motivation behind these questions is to help researchers who work with cell cultures. Automated cell image analysis could potentially reduce the amount of routine and speed up the studies.

Data Description

The dataset consisted of 3024 images 1080×1080 with 70 - 200 cells each in fluorescent and brightfield modalities. All cells on each image belong to one of the seven cell lines listed in Table 1. Examples fimages and chown in Figure 1. For each

 Table 1: Dataset description

Cell line Description human adenocarcinomic A549 alveolar basal epithelial HT1080 human fibrosarcoma

Contacts:

mikhail.papkov@gmail.com dmytro.fishman@gmail.com

Network architecture

Here we used altered Dürr and Sick architecture [2] proposed for single-cell phenotype classification. The number of dense layers was reduced compared to the original version of the architecture in order to prevent overfitting. The network structure is summarized in Table 2. The network and learning parameters are listed below:

- Implemented with Keras Python library using Tensorflow backend
- Batch normalization after convolutional and dense layers with batch size 8
- Scheduled learning rate (from 5×10^{-4} to 1.5×10^{-5})
- 25 epochs
- L2 regularization ($l = 5 \times 10^{-5}$)
- Adam optimizer

network layer in top-down order. Lavers Output

Table 2: Architecture of the Convolutional

Neural Network [2]. Each row represents

2019 010	
Input	$70 \times 70 \times 1$
Conv 2D (3x3)	$68 \times 68 \times 32$
Conv 2D (3x3)	$66 \times 66 \times 32$
Max pool 2D (2x2)	$33 \times 33 \times 32$
Conv 2D (3x3)	$31\times31\times64$
Conv 2D (3x3)	$29\times29\times64$
Max pool 2D (2x2)	14 imes 14 imes 64
Conv 2D (3x3)	$12\times12\times128$
Conv 2D (3x3)	$10\times10\times128$
Max pool 2D (2x2)	$5 \times 5 \times 128$
Dense	100
Dropout (0.2)	100
Dense	50
Output	7

We compare the network to the Random Forest trained on features extracted from respective cells with the PerkinElmer software. Random Forest classifier was tuned with parameter grid search and recursive feature elimination.

Results

We found the network performance to be dependent on the size of context around the nuclei. Learn-

Cell Phenotyping with Convolutional Neural Networks

Mikhail Papkov¹, Kaupo Palo², Leopold Parts^{1,3}, Dmytro Fishman^{1,4}

¹ Institute of Computer Science, University of Tartu, ² PerkinElmer, Inc., ³ The Wellcome Sanger Institute, ⁴ Quretec Ltd

Mikhail Papkov¹, Kaupo Palo², Leopold Parts^{1,3}, Dmytro Fishman^{1,4}

to perform well under these conditions. Here we use a convolutional neural network to classify cell cultures. show that deep learning outperforms traditional machine learning trained on handcrafted features extracted by PerkinElmer software.

Introduction

Goals and Questions

- 1. How well can individual cells be classified into seven cell lines?
- 2. How do neural networks perform compare to «traditional» machine learning methods (Rat Forest) trained on standard features dataset?
- 3. How does the same neural network architecture perform on different image modalities (fl cence, brightfield)?
- 4. How important is the context around nuclei for classification?

The main motivation behind these questions is to help researchers who work with cell cult Automated cell image analysis could potentially reduce the amount of routine and speed u studies.

Data Description

The dataset consisted of 3024 images 1080×1080 with 70 - 200 cells each in fluorescent and brightfield modalities. All cells on each image belong to one of the seven cell lines listed in Table 1. Examples of images and charup in Figure 1. For each

 Table 1: Dataset description

Cell line Description human adenocarcinomic A549 alveolar basal epithelial HT1080 human fibrosarcoma

Contacts:

mikhail.papkov@gmail.com dmytro.fishman@gmail.com

n. The to the revent
to the revent
revent
1.
zed in
e listed
ng Ten-
0
dense
actibe
(10-5)
< 10 °)
ר <

Table 2: Architecture of the Convolutional
 ral Network [2]. Each row represents vork layer in top-down order.

Layers	Output
Input	$70 \times 70 \times 1$
Conv 2D (3x3)	$68 \times 68 \times 32$
Conv 2D (3x3)	$66 \times 66 \times 32$
Max pool 2D (2x2)	$33 \times 33 \times 32$
Conv 2D (3x3)	$31\times31\times64$
Conv 2D (3x3)	29 imes 29 imes 64
Max pool 2D (2x2)	14 imes 14 imes 64
Conv 2D (3x3)	$12\times12\times128$
Conv 2D (3x3)	$10\times10\times128$
Max pool 2D (2x2)	$5 \times 5 \times 128$
Dense	100
Dropout (0.2)	100
Dense	50
Output	7

res extracted from respective cells ed with parameter grid search and recursive feature elimination.

Results

We found the network performance to be dependent on the size of context around the nuclei. Learn-

Astrocyte - type of glia cell

Nuclei of cells

Astro marker #1

Channels \odot

Astrocyte bodies

http://www.wingsforlife.com/en/latest/astrocytes-the-star-cells-1637/

Astro marker #2

All astrocytes have...

(1) One nucleus (in red)

All astrocytes have...

We attempted to **automate** the detection

Generated 5 datasets by combining original channels:

|-|V|

|, ||

|-|||

 $|-\vee$

|-V|

Generated 5 datasets by combining original channels:

I, II

|-|||

We tried several architectures that I have mentioned before

|-|V|

I-V

|-V|

|-||| |-|VI, II

U-Net SegNet Mask R-CNN

I-V

|-||| |-|VI, II

Human expert U-Net SegNet

I-V

Original image

Mask R-CNN

U-Net

SegNet

Ground Truth - white area

UNIVERSITY OF TARTU Institute of Computer Science

* These authors contributed equally to this work

Abstract

Brain is a vital part of all higher organisms, but mechanisms behind its functions remain poorly understood. It is a structured organ, with a variety of cell types ranging from neurons to immune cells non-uniformly distributed across space.

Localizing the different cell types and quantifying their gene expression patterns from microscopy images is the principal way to gain novel insights into the organization and inner workings of the brain. In particular, the challenging morphology of astrocytes makes them one of the most complex types of cells to identify. While a lot of manual work is currently needed to reliably segment astrocytes from images, the scale of data produced with modern microscopes renders this approach impractical. Here, we present an automated segmentation approach for brain microscopy images using deep learning. We implemented and compared the performance of U-Net [1], Mask R-CNN [2] and SegNet [3] models on RNA fluorescence in situ hybridization images from mouse brain

slices. The employed architectures are capable of reliably detecting and segmenting astrocytes, but have a high false positive rate, likely due to limitations of the training data.

Introduction

Semantic segmentation is one of the key problems in Computer Vision area. Identifying the different types of cells from brain images helps biologist to understand its inner mechanisms. Currently, it's done either via manual examination or semi-automated approaches that consume a lot of experts time and effort. Astrocytes are one of the most challenging types of the brain cells to segment due to their complex and heterogeneous structure. Here we present a fully-automated pipeline for segmenting astrocytes from microscopy images using SOTA CNN architectures: U-Net [1], Mask R-CNN [2], SegNet [3] (Figure 4).

Research questions are:

- Can Deep Learning help to segment astrocytes?
- Which neural network architecture works the best?
- How reliable produced segmentations are?

Data Description

chrd1, id3, irak2 and neun antibody

Channels description

Training set

98 images

dapi - marks the nuclei of astrocytes id3 - this marker is expressed as a spatial gradient and other cells

glast - marker of astrocytes, to be used most superficial layer. for segmentation

chrd1 - this marker is expressed as a spatial gradient across astrocytes, enriched in upper layers

irak2 - this marker is expressed in most astrocytes, slight spatial enrichment in upper layer astrocytes

neun antibody - marker of neurons

Test set

11 images

Ground truth Original

across astrocytes, enriched in deep layers and the

segmentation

image

Figure 2: Example of train and test sets images with ground truth segmentation

APPLIED SCIENCES FACULTY

Figure 6: Segmentation example of U-Net, SegNet and Mask R-CNN. White color - ground truth segmentation. een color – neural networks prediction. All models produce high number of false positive segmentations.

Interpretation of the results

Our experiments show that adding more channels into training data does not seem to significantly influence the model performance (Figure 5). Overall, U-Net has reached 0.21 IoU, SegNet – 0.18 and Mask R-CNN – 0.147. In general results proved CNN are able to segment the astrocytes in the microscopy images. However, all models produce high number of false positives that can be a result of insufficient quality and quantity of ground truth data.

Acknowledgments

University of Tartu ASTRA Project PER ASPERA Doctoral School of Information and Communication Technologies and High Performance Computing Center of the Institute of Computer Science at the University of Tartu.

References

- [1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox: U-Net. Convolutional Networks for Biomedical Image Segmentation. arXiv:1505.04597v1 [cs.CV] 18 May 2015 [2] Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick. Mask R-CNN. arXiv:1703.06870v3 [cs.CV] 24 Jan 2018
- [3] Vijay Badrinarayanan, Alex Kendall , Roberto Cipolla, Senior Member, IEEE. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. arXiv:1511.00561v3 [cs.CV] 10 Oct 2016

Results

Performance evaluation

0.10

0.05 —

Segmentation example

123456

12345

Mask R-CNN SegNet

U-Net

Figure 4: Three architectures used in this work, U-Net, SegNet and Mask R-CNN. All models have been trained using the same hyper-parameters, e.g. learning rate, regularization strength and optimization algorithm.

Mean average precision at different intersection over union (IoU) thesholds metric

1234

Datasets

was computed to assess the performance of used models

Figure 5: IoU score for U-Net, SegNet and Mask R-CNN for each dataset.

UNIVERSITY OF TARTU Institute of Computer Science

* These authors contributed equally to this work

Bohdan Petryshak^{*,1,2}, Oleksandr Pryhoda^{*,1,2}, Leopold Parts^{2,3}, Omer Bayraktar³, Dmytro Fishman^{2,4}

and inner workings of the brain. In particular, the challenging morphology of astrocytes makes them one of the most complex types of cells to identify. While a lot of manual work is currently needed to reliably segment astrocytes from images, the scale of data produced with modern microscopes renders this approach impractical. Here, we present an automated segmentation approach for brain microscopy images using deep learning.

We implemented and compared the performance of U-Net [1], Mask R-CNN [2] and SegNet [3] models on RNA fluorescence in situ hybridization images from mouse brain slices. The employed architectures are capable of reliably detecting and segmenting astrocytes, but have a high false positive rate, likely due to limitations of the training data.

Introduction

Semantic segmentation is one of the key problems in Computer Vision area. Identifying the different types of cells from brain images helps biologist to understand its inner mechanisms. Currently, it's done either via manual examination or semi-automated approaches that consume a lot of experts time and effort. Astrocytes are one of the most challenging types of the brain cells to segment due to their complex and heterogeneous structure. Here we present a fully-automated pipeline for segmenting astrocytes from microscopy images using SOTA CNN architectures: U-Net [1], Mask R-CNN [2], SegNet [3] (Figure 4).

Research questions are:

- Can Deep Learning help to segment astrocytes?
- Which neural network architecture works the best?
- How reliable produced segmentations are?

Data Description

Figure 1: Structure of the data used in the study, one image in the dataset constitutes of 6 channels: dapi, glast, chrd1, id3, irak2 and neun antibody

Channels description

dapi - marks the nuclei of astrocytes and other cells

most superficial layer. glast - marker of astrocytes, to be used for segmentation

chrd1 - this marker is expressed as a spatial gradient across astrocytes, enriched in upper layers

Training set

98 images

irak2 - this marker is expressed in most astrocytes, slight spatial enrichment in upper layer astrocytes

neun antibody - marker of neurons

Test set

11 images

Original

Figure 2: Example of train and test sets images with ground truth segmentation

Results

Performance evaluation

Mean average precision at different intersection over union (IoU) thesholds metric was computed to assess the performance of used models

U-Net

een color – neural networks prediction. All models produce high number of false positive segmentations.

Our experiments show that adding more channels into training data does not seem to

significantly influence the model performance (Figure 5). Overall, U-Net has reached

0.21 IoU, SegNet – 0.18 and Mask R-CNN – 0.147. In general results proved CNN are able

to segment the astrocytes in the microscopy images. However, all models produce high

number of false positives that can be a result of insufficient quality and quantity of

Segmentation example Mask R-CNN

Interpretation of the results

id3 - this marker is expressed as a spatial gradient across astrocytes, enriched in deep layers and the

Ground truth segmentation

ground truth data. Acknowledgments University of Tartu ASTRA Project PER ASPERA Doctoral School of Information and Communication Technologies and High Performance Computing Center of the Institute

of Computer Science at the University of Tartu.

References

- [1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox: U-Net. Convolutional Networks for Biomedical Image Segmentation. arXiv:1505.04597v1 [cs.CV] 18 May 2015 [2] Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick. Mask R-CNN. arXiv:1703.06870v3 [cs.CV] 24 Jan 2018
- [3] Vijay Badrinarayanan, Alex Kendall, Roberto Cipolla, Senior Member, IEEE. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. arXiv:1511.00561v3 [cs.CV] 10 Oct 2016

Cells

Cells

Cell colonies

Cells

Cell colonies

Tissue

Tissue segmentation

512 px

512 px

Tissue slide

Cover slips are detectable by classical methods

Cover slips are detectable by classical methods

Cover slips are detectable by classical methods

However **tissues** are much harder to identify

Tissue slide

Bounding box Patches

Patches

Probability maps

Segmentation

Thresholding & post-processing

Probability maps

Segmentation

Thresholding & post-processing

Prediction

Mistakes

True positive False negative False positive

Prediction

Mistakes

True positive False negative False positive

Prediction

Mistakes

True positive False negative False positive

512 px

Fluorescence

Summary

Fluorescence

Summary

Segmentation

Fluorescence

Brightfield

Summary

Segmentation
Fluorescence

Brightfield

Summary

Fluorescence

Brightfield

Summary

Zoom out

Fluorescence

Brightfield

Summary

Segmentation

WANTED!

Dmytro Fishman Mikhail Papkov Sten-Oliver Salumaa Tanel Pärnamaa Jaak Vilo

Leopold Parts Omer Bayraktar William Jones Elizabeth Bell

Project team

PerkinElmer[®] For the Better Kaupo Palo Martin Daffertshofer

Daniel Majoral Roman Ring Ilya Kuzovkin Ardi Tampuu Raul Vicente

Bohdan Petryshak **Oleksandr** Pryhoda

