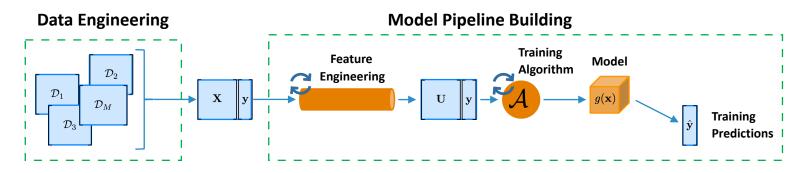


### Productionizing H2O Models with Apache Spark

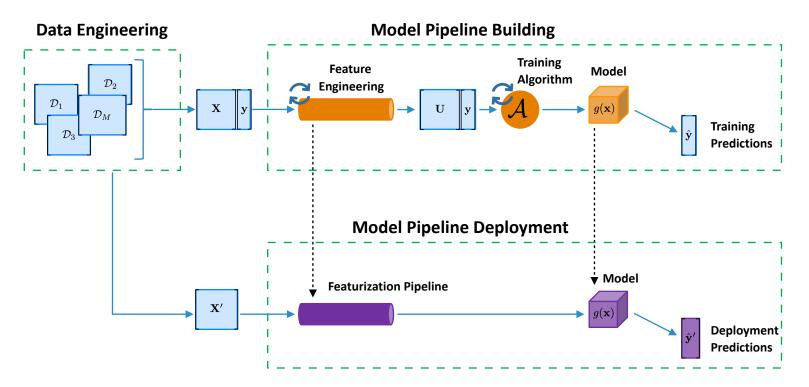
Al Ukraine Kyiv, October 13-14 2018



SPARKLING WATER


Jakub Háva, jakub@h2o.ai https://github.com/jakubhava https://www.linkedin.com/in/havaj/

## Who are we?


- Kuba
  - Senior Software engineer at H2O.ai Core Sparkling Water
  - Master's at Charles University (CZ)
  - Implemented high-performance cluster monitoring tool for JVM based languages (JNI, JVMTI, instrumentation)
- Michal
  - VP of Engineering at H2O.ai
  - Creator of Sparkling Water
  - Ph.D at Charles University (CZ), PostDoc at Purdue

# Machine Learning (ML) Lifecycle

### **Basic ML Lifecycle**



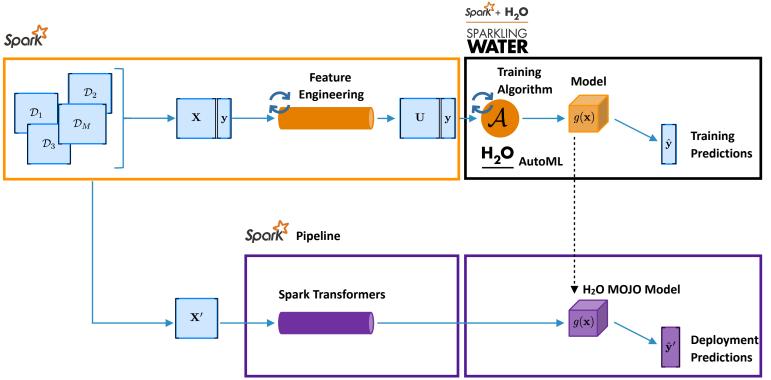
### **Basic ML Lifecycle**



### **Example Implementations**

Model Building

Model Deployment


| Data Engineering | Feature<br>Engineering | Training Algorithm | Deployment<br>Pipeline | Model                     |
|------------------|------------------------|--------------------|------------------------|---------------------------|
| Spark            |                        | H2O                | Spark                  | H2O MOJO                  |
| Spark            | H2O Driverless Al      |                    | Spark                  | H2O Driverless Al<br>MOJO |

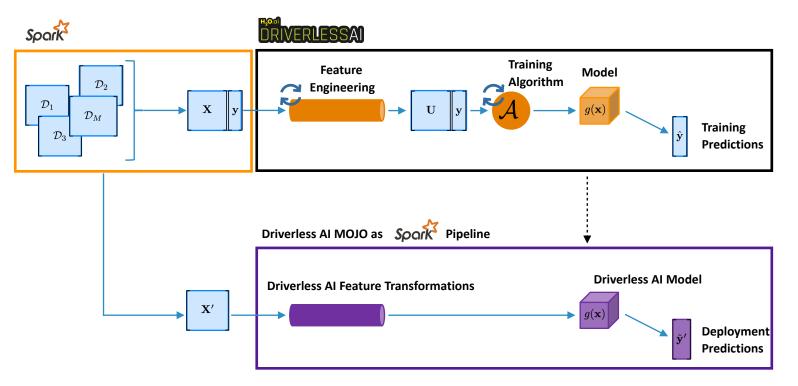
# H2O + Spark =Sparkling Water

## H2O + Spark

- H2O
  - Machine Learning Library
  - Distributed Algorithms
  - For ML experts
- Sparkling Water
  - Integrates H2O & Spark Ecosystems
  - Transparent for Spark users
  - Based on Spark pipelines & H2O

#### **Basic ML Lifecycle: Sparkling Water**




# Demo: Spark Pipeline

## **H2O Driverless Al**

## H2O Driverless Al

- What if I'm not expert ?
  - H2O Driverless AI
- H2O Driverless AI
  - No expert knowledge required
  - Automatic Feature Engineering & ML

### **Basic ML Lifecycle: Driverless Al**



# **Demo: Driverless Al as Spark Pipeline**



#### What do these settings mean?

ACCURACY

- Training data size: 4,000 rows, 25 cols (sampled)
  Feature evolution: XGBoost, 1/3 validation split, 2 reps
  Final pipeline: XGBoost, 4-fold CV

#### TIME

- Feature evolution: 8 individuals, up to 500 iterations

- Early stopping: After 50 iterations of no improvement

#### INTERPRETABILITY

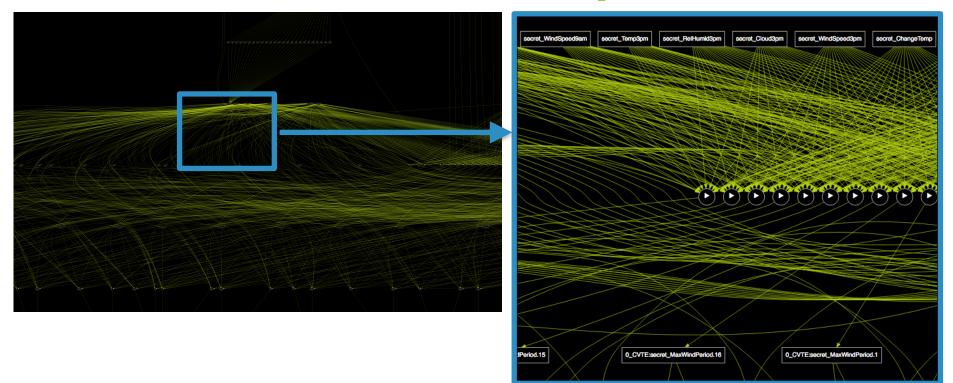
- Feature pre-pruning strategy: None

 Monotonicity constraints: disabled
Feature engineering search space (where applicable): ['Clustering', Date', 'FrequencyEncoding', 'Identity', 'Interactions', 'TargetEncoding', 'Text', 'TruncatedSVD', 'WeightOfEvidence']

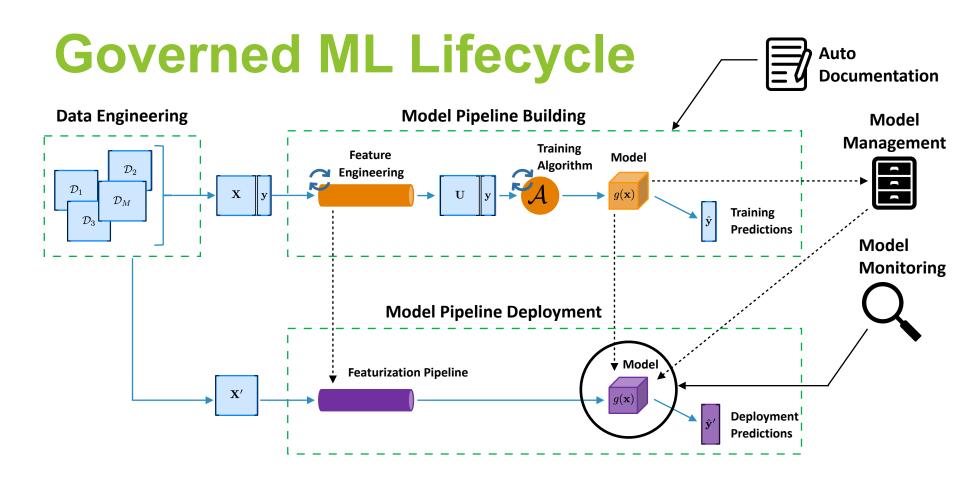
XGBoost models to train: - Feature evolution: 4024

- Final pipeline: 1

Estimated max. total memory usage: - Feature engineering: 8.0MB - GPU XGBoost: 1.2GB


Estimated runtime: 20 minutes

| TRAINING DA                | ATA            |                      |                  |                      |  |
|----------------------------|----------------|----------------------|------------------|----------------------|--|
| dataset<br>train.csv       |                |                      |                  |                      |  |
| <sup>ROWS</sup>            |                | DROPPED COLS         | VALIDATION DATAS | GET TEST DATASET     |  |
| target column<br>default p | ayment ne      |                      | FOLD COLUMN<br>  |                      |  |
| WEIGHT COLUMN<br>          |                | TIME COLUMN<br>[OFF] |                  |                      |  |
| <sub>түре</sub><br>int     | соимт<br>23999 | UNIQ<br>2            | IUE              | target freq<br>18630 |  |
| EXPERIMEN                  | r settings h   | ELP                  |                  | SCORER               |  |
|                            |                |                      |                  | GINI<br>MCC          |  |
|                            |                | 3                    | F05              |                      |  |
|                            | ) ( 10         |                      | 3                | F1                   |  |
|                            |                |                      |                  | F2<br>ACCURACY       |  |
| ACCURACY                   | TIME           | INT                  | ERPRETABILITY    | LOGLOSS              |  |
|                            | REPRODUC       |                      | NABLE GPUS       | AUC                  |  |
| CLASSIFICATIO              | NLFRODUC       |                      |                  |                      |  |


#### DATASETS EXPERIMENTS MLI H2O-3 HELP PY\_CLIENT MOJO2-RUNTIME LOGOUT H2OAI

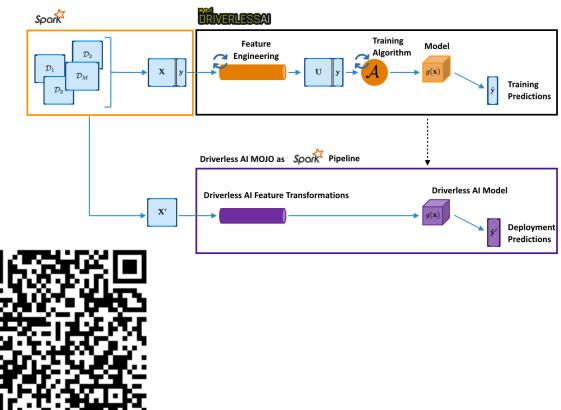
© 2017-2018 H20.ai, All rights reserved.

#### **Driverless Al Pipeline**



# Governed ML Lifecycle




### **Materials**



https://bit.ly/2sxowxD

## Thank you!

#### **Sparkling** Water enables deployment of H2O ML models with Spark **Pipelines**

