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Maijor limiting factors for Al adoption

Data is usually the most important limiting factor

Current obstacles to Al adoption in various domains:
e lack of sufficiently large datasets
e lack of labeled training data
e difficulty explaining results
e difficulty generalizing
e risk of bias

Here at Neuromation, we are addressing these issues
with...
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For Deep Learning in Computer Vision and Beyond

e For computer vision, we generate 100%
accurate labeled data, with pixel-perfect
labeling which is very hard or impossible
to do by hand

ACCURACY b/ $ ' AUTOMATION
S e Increases the speed of automation by

orders of magnitude and is several times
cheaper than hand labeling

Synthetic data is a possible solution
in many cases
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Synthetic Data in Modern Al
VIRTUAL-WORLD LEARNINGW

[ It Can be traced tO 20008, bUt before 201 6 /Acquisition of Virtual Video Sequence; Generation of Training Sets \
synthetic data was not popular b &R &

e A few works, mostly related to self-driving
cars where datasets are clearly unavailable

Realistic Virtual
World

e E.g., (Marin et al., 2010) use virtual world
training sets for pedestrian detection with
classical CV (SVM on HOG features)

Candidate
selection
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e Around 20716 interest spiked
e Now one can find various synthetic datasets for computer vision:
o SunCG (Song et al., 2017): 45K indoor 3D scenes ready to visualize

SUNCG dataset
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e Around 20716 interest spiked

e Compare with Matterport3D (Chang et al., 2017):
largest real dataset with panoramic views, 90 buildings

Textured 3D Mesh Panoramas Object Instances
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e Synthetic datasets with city scenes:

o (Johnson-Robertson et al., 2017):
Driving in the Matrix — synthetic
Cityscapes

o (Gaidon et al., 2016): virtual worlds
for object tracking — synthetic KITTI
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e Synthetic datasets with specific objects: ‘;

o (Varol etal., 2017): SURREAL
synthetlc training data

(Synthetic hUmans for REAL tasks)
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o Th ese SynthetiC e — Dataset layer Web client API |—| AMT crowdsourcing |
dataSGTS can be - - x L ... » I;l::::f . OpenAl Gym agent |
: . : Python RL API DFP agent |
Wrapped In Synthetlc SUNCG Matterport3D —————)
A Configuration layer UNREAL agent |
€na b I ers. (a) Environment (b) Agent controls (c) Sensors

Controlled scene selection Discrete or continuous controls for {group:”vision", modes: [{type:"color",
discrete navigation enc:"rgba"}, {type:"depth", enc:”£32"},

M I N OS S 't {source:"suncg", scenes: (s)=>s["nrooms"]==1 ] o
" " "stepAcceleration": ol " gl i
O ( avva e Sagsilindoorsil 20} "turil—\cceleration" R 15',7 -1, :tg:: "zz:siti;"?n:ncfxzb;éctType" .,
. "angularFriction":1, pos:[0,0.6,0], dir:[0,0,-1],
i "angularResolution": 0.785 :[320,3201},
al., 201 7) IS a —~ f:;pe:"force", pos: [0,=0:257;01,
. - e dix:0; 0,1 radial = [0:25,45036 2817
S| icall! i i
simulator for i g O
navigation in
synthetic 3D
Object variation and clutter level control
H {hide: ["chair", "candle"]}
environments

enc: "contact"},{type:"gps", enc:"d xz"}

Force
continuous navigation
"stepAcceleration": 20,
"turnAcceleration": 12.1,

"angularFriction":1,
"angularResolution": 0.01 Normal ObjectType

$ N=UROMATION



Synthetic Data in Modern Al

e These synthetic datasets can
be wrapped in synthetic
enablers:

o House3D (Wu et al,,
2018) is a similar
simulator from
Facebook

e And then such simulators
can be used for...
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3D scenes

3D environment
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Synthetic Data in Modern Al

e Reinforcement learning:

o RoomNav (Wu et al.,
2018) uses House3D to
learn to navigate rooms

X¢ | Gated Fusion l—'l MLP I—-» Q(st,a,0)
Gated-CNN L a; |
for DDPG with CNN
:antmuous actions stack Gated Fus'°" MmLpP I_' u(s:|0)
State Se Input at c 1 Inputat t
Instruction
Embeddin
...... [om Jou | Lom - ﬁ-
Gated-LSTM ! v(s¢|0)
for A3C with
discrete actions LSTM = eeeene n(a; s¢|0)
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<~ Q: What color is the car?

Reinforcement learning: B I M . o] nnmeinnnn

e

o (Das et al., 2018) uses House3D for
embodied question answering

o Planner and controller to improve
gradient flows

0 1 0 4 0 1 2
h, ‘ It4q ltya By ll t+ t+ Its2 fiipo + 43 Ryts
— > 3 =
& ] L 12 @
I—» PLNR 41 I—> PLNR 34 | I—. PLNR +d I—> PLNR
) CTRL 0 CTRL CTRL CTRL CTRL Q CTRL CTRL 0
0 il 1 11 0 1 0
(A RETURN [, T, . Gyign a4, RETURN @ 43 a 43 RETURN Q 4q
TURN RIGHT FORWARD FORWARD FORWARD FORWARD TURN LEFT TURN LEFT STOP
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Synthetic Data in Modern Al

e NLP for navigation:

©)

(Anderson et al., 2018)
uses Matterport3D to
create R2R, a dataset of
room-to-room navigation
instructions

And an action prediction
model with attention
over the instructions that
actually can navigate
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Pass the pool and go indoors using the
double glass doors. Pass the large table
with chairs and turn left and wait by the
wine bottles that have grapes by them.

Walk straight through the room and exit
out the door on the left. Keep going past
the large table and turn left. Walk down
the hallway and stop when you reach the
2 entry ways. One in front of you and one
to your right. The bar area is to your left.

Enter house through double doors,
continue straight across dining room, turn
left into bar and stop on the circle on the
ground.
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Standing in front of the family picture,
turn left and walk straight through the
bathroom past the tub and mirrors. Go
through the doorway and stop when the
door to the bathroom is on your right
and the door to the closet is to your left.

Walk with the family photo on your
right. Continue straight into the
bathroom. Walk past the bathtub. Stop
in the hall between the bathroom and
toilet doorways.

Walk straight passed bathtub and stop
with closet on the left and toilet on the
right.
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170,000 OBJECTS

TO BE RECOGNIZED ON SHELVES

e Impossible to label this dataset by hand

e We generate synthetic data to train DL models
e On the right: our sample synthetic images.

e Generated by rendering of 3D scenes.

In computer vision, synthetic data
can come from 3d modeling
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Healthcare example: synthetic babies to train smart cameras

e Example from healthcare: we are collaborating with
MonBaby, a baby monitor that helps prevent SIDS
and other emergencies through automated alarms

e Current Monbaby solution: a wearable button | l

e Our joint solution: a smart camera that watches the
baby and recognizes the pose, actions, breathing, etc.

e Synthetic data solves the lack of real data, especially ~ P
for emergencies W
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Success despite lack of data, but how can we go synthetic?..

e Interesting question: how do we apply
synthetic data to, say, medical imaging?

e We have a number of projects in medical
imaging, showing that they can succeed
despite lack of data

e But can we still produce useful synthetic
data for domains where direct 3D
modeling is hard or impossible?

e What kind of models would it take?..
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Generative Models For Synthetic Data
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Synthetic data can be produced with generative models

e ...why, generative models, of course!

e Sometimes we cannot produce synthetic data
directly, but can still augment and enlarge
datasets with models such as GANs:

o generator generates
o discriminator discriminates
o lots and lots of variations
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Synthetic data can be produced with generative models

e (Zhang et al., 2015): gaze estimation input image T
in the wild; MPlIGaze dataset, N s
standard convolutional architecture meimonr | B
e Recent state of the art m- 5% gty -’:"*’""27‘?3“"" %ﬁeﬁfﬂe

Face and landmark ' l ’ CNN model

detection Famers T
calibration vector h

1@36x60 20@32x56 20@16x28 50@12x24 50@6x12 - |~

Convolutions
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Generative Models For Synthetic Data
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Synthetic data can be produced with generative models

e (Wood et al., 2016): learning gaze estimation from
synthetic images generated by a special 3D

modeling system UnityEyes

High-resolution head scans | | 1,000,000 rendered images

Generative eye region model

©HEIEr

Input real-world image

Figure 8: We include eyelashes and eye wetness for realism. (a)

shows a render without these, (b) shows eye wetness (red) and eye-
lash geometry (blue), (c) shows the final render.

(@ (b) ©
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Figure 9: We use pre-integrated skin shading for realism (c). With-
out it, skin appears too hard (a). (b) shows the scattered light
through skin — this causes the skin to appear soft.
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Synthetic data can be produced with generative models

Unlabeled Real Images
e (Shrivastava et al., 2017): Apple learns a gaze i
estimation model on synthetic images refined by

SimGAN that trains to fool D while self-regularizing '
to keep refined S|m|Iar to original synthetic images - w ‘

Synthetlc Refined Synthetic Refined

-s
Real vs Refined «— E

Refined  Synthetic

Unlabeled real Unlabeled Real Images Simulated images
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Synthetic data can be produced with generative models

100

e (Shrivastava et al., 2017): as a result, Apple of T
. g . . » 80
significantly improved state of the art in gaze g
estimation; also applied to hand pose estimation § 60
o 50
Method R/S | Error ‘g o
Support Vector Regression (SVR) [33] R 16.5 £ W TR
Adaptive Linear Regression ALR) [23] | R | 16.4 = - Refined Synthetic Data
Random Forest (RF) [36] R | 154 10 ” ggggpgg;g Data 4x
kNN with UT Multiview [47] R 16.2 %
CNN with UT Multiview [47] R 13.9 Drstance from ground truth [degrees]
k-NN with UnityEyes [43] S 9.9 e
CNN with UnityEyes Synthetic Images | S 11.2 ;‘g %
CNN with UnityEyes Refined Images S 7.8

Refined

S LY FYbysy

Unlabeled Real Images Simulated images



Generative Models For Synthetic Data

Synthetic data can be produced with generative models

e And indeed, this idea has
been applied to medical
imaging

e (Shin et al., Sep 2018):
synthetizing MRI images
with brain tumors with GANs

. . Synthetic only,
Method Real |Real + Synthetic||Synthetic only
fine-tune on 10% real
GAN-based (no aug) |(|0.64/0.14|  0.80/0.07 0.25/0.14 0.80/0.18
GAN-based (with aug)|[|0.81/0.13|  0.82/0.08 0.44/0.16 0.81/0.09
Wang et al. [20] 0.85/0.15|  0.86/0.09 0.66/0.13 0.84/0.15
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BRATS - T1

ADNI-T1

Infer (G)
i)Y

MRI-to-label

Infer (G)

MRI-to-label

Brain atlas - BRATS
(inferred)

Tumor label - BRATS
(provided)

Brain atlas - ADNI
(inferred)

R -

Merge

No change

Merge

Brain + tumor
label (merged)

Brain + tumor
label (merged)
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Synthetically
generated MRI

Infer (G)

Label-to-MRI

Synthetically
generated MRI

Infer (G)

Label-to-MRI



Generative Models For Synthetic Data

Synthetic data can be produced with generative models

e BAGAN (balancing GAN) solves another problem:
data augmentation for GAN

4 Generator

insi_airices .
H H ( ! Latent, ake
highly imbalanced uienceior e o - 2
ncoder e e . conditional
d B n q r .y latent vector Discriminato
't t o Original »| generator ||mage ake
a ase S rigina Reconstruct data -’ :::z'
imizati ata instances L

(Mariani et al., 2018)

e
(b) GAN initialization.

(a) Real image samples (b) BAGAN (c) ACGAN
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Original
data  Sparse categorical cross-entropy optimization

(¢) GAN training.

(d) Simple GAN



Synthetic Data Becomes Ubiquitous

e Recent major conferences keep the trend:

©)

O

CVPR 2018: coping with domain
shift to train on synthetic data
ICLR 2018: new multimodal
synthetic datasets

...and much more!
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Extreme Domain Shift

Proposed Approach
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{ 2 ‘ 1
Model Trained on-
Synthetic Data (F,)

|||||| .

Model Trained on
Real Data (F )

Model Trained on
Synthetic Data (F,)

s e ‘

Test on Synthetic Data  High Accuracy on Synthetic Data

@ TestonRealData

Due to
Domain Shift

4

"'#

<

Ff

Performance on Real Data

)
‘ \‘_‘--

Sﬁperwsed Synthetic data and Unsupervised Real Data

N Test on Real Data

Our trained model (F,,

GAN

-y

Proposed GAN
based Training

Reduces

I Domain Gap

Performa nce on Real Data
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Synthetic data can be produced with generative models

e Somethimes synthetic data is autoure
needed directly, not as a stepping ; »
stone for training models y e % :

| Latent

e Our collaboration with Insilico “ e ifiE)
Medicine: GANs for drug discovery ' N

Fingerprint Fingerprint
that generate (fingerprints of)
molecules likely to have desired
properties with conditional - e
adversarial autoencoders SRR | , , concentration
Input layer Encoder Decoder Output layer
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| have made the case for synthetic data, but
there are other problems:

e Sometimes data is sensitive, and
data providers do not trust public = '
clouds but still need computational
power to train models.

e Most important problem: dire need for Al
talent; only ~22K deep learning experts in
the world, mostly concentrated in a few
places (see map on the right).
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Ai Talent + Synth. Data + Compute = Neuromation Platform

Democratizing Al for every industry,
healthcare first of all

Developers
Neuromation Democratizes Al
by Driving Adoption and Improving Market Growth
Accessibility Accelerated by Neuromation $
Al Al N=UROMATION
Adoption Community
oM

NTK Holders

&

Neuromation

YE
Platform =

Market expanded
by Neuromation

Accessibility 2018 I 2019 [ 2020 Time
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R

Yashar Behzadi Constantine Goltsev Evan Katz Sergey Nikolenko Artyom Astafurov Maxym Prasolov
CEO Investor / Chairman Chief Revenue Officer ~ Chief Research Officer CTO Founder

Yuri Kundin Evgeniya Zaslavskaya Arthur McCallum Fedor Savchenko David Orban Andrew Rabinovich
Coo PR & Business VP Digital Economy VP of Research Adviser Adviser
Development (Russia & CIS) & Development
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Our Research Team

Andrew Rabinovich
Adviser

of deep learning at Magic Leap.

World-leading researcher in deep learning
and computer vision research, author of
numerous patents and publications, founder
of a biotech startup; held leading R&D
positions at Google; currently the director
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Sergey Nikolenko
Chief Research Officer

World-class researcher in machine learning (deep
learning, Bayesian methods, NLP, and more) and
analysis of algorithms (for networking), Sergey has
authored more than 120 research papers, several
books, courses on machine learning and deep
learning, and more.

Kyryl Truskovskyi Aleksey Artamonov Rauf Kurbanov
Lead Researcher Lead Researcher Lead Researcher
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Alexander Rakhlin
Senior Researcher
Kaggle Master

=

+10 more top deep

learning researchers
in our offices at St. Petersburg,
Kiev, and San Francisco!
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Where androids dream of electric sheep

THANK YOU!

neuromationio 1 M & ©



s Al
Breast Cancer Histology ™ UKRAINE

Medical imaging projects: success despite lack of data

Rakhlin et al., 2018. Breast cancer histology
image analysis with deep CNNs, four classes:
normal, benign, in situ carcinoma, invasive
carcinoma

Extraction of Deep CNN features with VGG-16

Preprocessing pipeline

1. Original image 2. Staining normalization 3. Augmented crops

[o]o] loo] |E|IE||E|
0|0 O |0 e = |=H
[ofo] [o]o] oTo] + =+ =+

[ofo]

iR _— EE‘E

4. Deep CNN descriptors 5. 3-norm pooling

Block 2 Block 3 Block 4 Block 5

Block 1

Global Average Pooling

128

@ me’EGB 512

7

feature vector of the patch

6. Building multiple datasets,
based on number of scales, crop

sizes, encoders Input patch
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Medical imaging projects: success despite lack of data

D

HEC

nnn
(7108 m I 2R/ EAT) - 2
PR 1i%E 2 )24 2
IIIIIIEEI#

72

p‘c
5
‘\V;<<"

Iglovikov et al., 2017. Skeletal bone age assessment used to
diagnose endocrine and metabolic disorders in child development;
deep CNNs for keypoint detection and segmentation

VGG Block

Key Points Model

original

mask

Output
norm

registered
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Diabetic Retinopathy Detection ™ UKRAINE

Medical imaging projects: success despite lack of data

Rakhlin et al., 2017. Diabetic retinopathy I l .

. . . .- I .-- d
detection surpassing human optometrists eye
and achieving state of the art results with

much less data

“J

-l

Nomal Retina Diabetic Retinopathy

Macula

Retinal blood e Mlcm:ourysm. edema
exudates
Vesesls Cotton wool
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Medical Imaging Beyond Computer Vision VU
Deep learning methods are not restricted to 2D/3D images
e Imaging mass-spectrometry: spatially

%

structured multidimensional data

[

e Project led by Dr. Theodore Alexandrov
at the European Molecular Biology Lab

e High-def imaging, 10K+ dimensional
spectrum at every point RV, T VS W S |
e We are developing informative latent
representations to help study the cell P =
cycle etc. via metabolomics *» |HH“ EMBL

|||||||||||
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