

Billion-scale recommendations on Spark

Motivation

Criteo business is personalized advertising

At tera-scale

worldwide

1 bln products

We want to know...

Which products are more similar?

criteo.

Which users have similar product history?

Which products from Ebay can we recommend to those you have history at VertBaudet?

The standard approach

Underlying data => user timelines

Implicit feedback personalized recommendations

 u_i - user i

 v_j - item j

No explicit feedback, but interactions of users with items (views, clicks, sales, etc.)

Factorize user-item matrix

		Items					
		1	2		i		m
	1	5	3		1	2	
	2		2				4
Users	:			5			
	u	3	4		2	1	
	:					4	
	n			3	2		

Plethora of methods Criteo

Mostly tiny datasets used

	ML-20M	Netflix	MSD	criteo.
# of users	136,677	463,435	571,355	
# of items	20,108	17,769	41,140	3 bln users
# of interactions	10.0M	56.9M	33.6M	1 bln items
% of interactions	0.36%	0.69%	0.14%	

Similarity SVD approach

1/ Build the similarity matrix

For example, PMI, pointwise mutual information, is a measure of association between a pair of discrete variable values

$$PMI_{i,j} \coloneqq \log rac{P(u_i,v_j)}{P(u_i)P(v_j)} - \log k$$

 $PMI_{i,j} \coloneqq 0 \text{ when } P(u_i, v_j) = 0$

2/ Truncated SVD and kNN

$$PMI = USV^T$$

U is a user factor matrix

V is an item factor matrix

 $U_{i,*}SV^T$ is scores of all items for a particular user

Comparison between methods

Netflix dataset, ratings 4+

Method	NDCG@100	Training time, secs	
Most popular	0.158	0	
PureSVD (2012)	0.340	3	
PMI SVD (ours)	0.348 (CI ~0.002)	3	
W-ALS (2008)	0.352	84	
VAE-CF (2018)	0.386	5 580	

Scalable truncated SVD

Step 1 - tall-and-skinny projection that captures most of the action

$$||A-oldsymbol{U}SV^T||pprox ||A-QQ^TA||$$

Where $||\cdot||$ is spectral norm (the largest eigenvalue)

And Q is low-rank and orthonormal

We can decompose Q^TA part of $QQ^TA=Q(\hat{U}SV^T)$

We can decompose Q^TA part of $QQ^TA=Q(\hat{U}SV^T)$ notice that by uniqueness of $U=Q\hat{U}$

We can decompose Q^TA part of $QQ^TA = Q(\hat{U}SV^T)$ notice that by uniqueness of $U = Q\hat{U}$ and finding \hat{U} is cheap!

We can decompose Q^TA part of $QQ^TA=Q(\hat{U}SV^T)$ notice that by uniqueness of $\boxed{U}=Q\hat{U}$ and finding \hat{U} is cheap!

 $(Q^TA)^T = \tilde{Q}R = \tilde{Q}(\hat{V}S\hat{U}^T)$

 $1/ ext{ Generate random matrix } G \in R^{m imes (k+p)}$

with values drawn independently from gaussian distribution where k - target approximation rank, p - oversampling

- $1/ ext{ Generate random matrix } G \in R^{m imes (k+p)}$
 - with values drawn independently from gaussian distribution where k target approximation rank, p oversampling
- 2/ Multiply by A several times: $\hat{Q}=(AA^T)^qAG$ orthogonalizing columns after every multiplication $\hat{Q}=QR$

- 1/ Generate random matrix $G \in R^{m \times (k+p)}$ with values drawn independently from gaussian distribution where k target approximation rank, p oversampling
- 2/ Multiply by A several times: $\hat{Q}=(AA^T)^qAG$ orthogonalizing columns after every multiplication $\hat{Q}=QR$
- $3/\operatorname{Find}\hat{U}$ by $B:=Q^TA; B^T= ilde{Q}R= ilde{Q}(\hat{V}S\hat{U}^T)$

- 1/ Generate random matrix $G \in R^{m \times (k+p)}$ with values drawn independently from gaussian distribution where k target approximation rank, p oversampling
- 2/ Multiply by A several times: $\hat{Q}=(AA^T)^qAG$ orthogonalizing columns after every multiplication $\hat{Q}=QR$
- $3/\operatorname{Find}\hat{U}$ by $B:=Q^TA; B^T= ilde{Q}R= ilde{Q}(\hat{V}S\hat{U}^T)$

 $4/\operatorname{Return} U := Q\hat{U}$

Approximation error bound

With n=10^9, k=100, p=30, q=3:

$$||A-QQ^TA|| \leq 4.19 imes \sigma_{k+1}$$

Meaning that R-SVD with k=105 will be as good as full SVD with k=100 even if singular values do not decay

Implementation

Distributed operations

- 1/ Generate random matrix $G \in R^{m imes k}$
- 2/ Mutltiply dense B by single block $C \in R^{k \times k}$
- 3/ QR-decomposition of dense $B \in R^{m imes k}$
- 4/ Multiply sparse $A \in R^{n \times m}$ by dense $B \in R^{m \times k}$

Distributed block-matrix

Generating random matrix

Create empty partitions

Fill-in with random values

Tall-and-skinny multiplication by a single block

Use efficient broadcasting

```
broadcastedC = sc.broadcast(C)

blocks_B.map {
    block =>
        block * broadcastedC.value
}
```

criteo.

Tall-and-skinny QR-decomposition

Square sparse by tall-andskinny dense multiplication

1/ Shuffle pattern

Send required blocks of B to every partition of A

Pros: easy to implement

Cons: shuffle-size is B times number of row partitions in A

criteol.

2/ Column-partition zipping

A is column-partitioned, B is rowpartitioned. Use zipPartitions method

Pros: no shuffle

Cons: even with single column in partition, we need to store in memory equivalent to the size of B

3/ Multiplexed RDDs column zipping

Split A into multiple RDDs by rows. Do column-zipping on every RDD

Pros: no shuffle

Cons: overhead on splitting of A

Properties of our solution

- 1. Can be expressed in MapReduce / Spark API
- 2. Memory requirements independent of size

3. Deterministic results

Clone, fork, send PRs

github.com/criteo/Spark-RSVD

Questions?

We are hiring!

```
1/ Randomized methods to capture the main action of a matrix:
FINDING STRUCTURE WITH RANDOMNESS:
PROBABILISTIC ALGORITHMS FOR CONSTRUCTING
APPROXIMATE MATRIX DECOMPOSITIONS
https://arxiv.org/pdf/0909.4061.pdf
2/ Sharp bounds on randomized projection error (Corollary 1.5):
Randomized Algorithms for Low-Rank Matrix Factorizations:
Sharp Performance Bounds
https://arxiv.org/pdf/1308.5697.pdf
3/ Indirect tall-and-skinny QR algorithm (the one implemented):
Tall and Skinny QR factorizations
in MapReduce architectures
http://inside.mines.edu/~pconstan/docs/constantine-mrtsqr.pdf
4/ Direct tall-and-skinny QR algorithm (not the one implemented, but good analysis):
Direct OR factorizations for tall-and-skinny
```

5/ Randomized PCA algorithms (with implementation in Spark):

Randomized algorithms for distributed computation of principal component analysis and singular value

https://github.com/hl475/svd (branch testSVD)

matrices in MapReduce architectures https://arxiv.org/pdf/1301.1071.pdf

https://arxiv.org/pdf/1612.08709.pdf

decomposition