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Criteo business is personalized

advertising
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At tera-scale

1 bln

worldwide sroducts
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We want to know...
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Which products are

more similar?

—_——
|



, criteo
Which users have

similar product history?
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Which products from Ebay can we
recommend to those you have
history at VertBaudet?
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The standard approach
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Underlying data => user

timelines
-
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Implicit feedback personalized

recommendations

U; - user ? No explicit feedback, but interactions of

. _users with items (views, clicks, sales, etc.)
v; - 1tem 7
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Factorize user-item matrix
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Quality

Plethora of method

VAE CF
NCE W-ALS
W-SGD
BPR

PureSVD

Scalability
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Mostly tiny datasets used

ML-20M Netflix MSD criteo

# of users 136,677 463,435 571,355
# of items 20,108 17,769 41,140 3 bln users
# of interactions 10.0M 56.9M 33.6M 1 bln items

% of interactions 0.36% 0.69% 0.14%
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Similarity SVD
approach



1/ Build the similarity matrix

For example, PMI, pointwise mutual information, is a
measure of association between a pair of discrete variable
values

PMI; ; == log P(()“v(’),) log k

PM]I; ; = 0 when P(u;,v;) =0




2/ Truncated SVD and kNN

PMI=USV?T

U is a user factor matrix
V is an item factor matrix

U; .SV is scores of all items for a particular user



Comparison between

methods

Netflix dataset, ratings 4+

Method NDCG@100 Training time, secs
Most popular 0.158 0

PureSVD (2012) 0.340 3

PMI SVD (ours) 0.348 (Cl ~0.002) 3

W-ALS (2008) 0.352 84

VAE-CF (2018) 0.386 5580
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Scalable truncated
SVD
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Step 1 - tall-and-skinny projection
that captures most of the action

A - TSV~ ||[A—QQ A

Where || - || is spectral norm (the largest eigenvalue)

And @ is low-rank and orthonormal
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Step 2 - SVD of k x k matrix gives
us everything

We can decompose Q' A part of QQT A = Q(ﬁ SvT)
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Step 2 - SVD of k x k matrix gives
us everything

We can decompose Q' A part of QQT A = Q((}' SvT)
notice that by uniqueness of [/ = QU
and finding U is cheap!

(QTA)T = QR = Q(VSUT)
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1/ Generate random matrix G € R™* (k+p)

with values drawn independently from gaussian distribution
where k - target approximation rank, p - oversampling
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Algorithm Criteo

1/ Generate random matrix G € R™*(k+p)

with values drawn independently from gaussian distribution
where k - target approximation rank, p - oversampling

2/ Multiply by A several times: Q = (AAT)7AG

orthogonalizing columns after every multiplication Q = QR

3/Find U by B := QTA; BT = QR = Q(VSUT)

4/ Return U := QU
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Approximation error bound

With n=1019, k=100, p=30, g=3:

1A — QQTA|| < 4.19 x 4.

Meaning that R-SVD with k=105 will be as
good as full SVD with k=100 even if singular
values do not decay

Witten et al., 2013, Randomized Algorithms for Low-Rank Matrix Factorizations: Sharp Performance Bounds
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Implementation
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Distributed operations

1/ Generate random matrix G € R™**

2/ Mutltiply dense B by single block C' € RF**

3/ QR-decomposition of dense B € Rmxk

4/ Multiply sparse A € R™™ by dense B € R™**
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Distributed block-matrix

. Block-matrix

Partition
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Generating random matrix

Create empty partitions Fill-in with random values
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Tall-and-skinny multiplication

by a single block

Use efficient broadcasting




Tall-and-skinny QR- criteot.

decomposition

Level 1 Level 2

i Constantine et al., 2013, Tall and Skinny QR factorizations in MapReduce architectures

B=0OR
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Square sparse by tall-and-

skinny dense multiplication
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1/ Shuffle pattern

Send required blocks of B to
every partition of A

Pros: easy to implement

Cons: shuffle-size is B times
number of row partitions in A
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2/ Column-partition zipping

A is column-partitioned, B is row-
partitioned. Use zipPartitions method

Pros: no shuffle

Cons: even with single column in

. partition, we need to store in

memory equivalent to the size of B
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3/ Multiplexed RDDs column

zipping

Split A into multiple RDDs by rows.
Do column-zipping on every RDD

Pros: no shuffle

Cons: overhead on splitting of A
‘l‘l L
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Properties of our solution

1. Can be expressed in MapReduce / Spark API
2. Memory requirements independent of size

3. Deterministic results
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Clone, fork, send PRs

github.com/criteo/Spark-RSVD
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Questions?



1/ Randomized methods to capture the main action of a matrix:
FINDING STRUCTURE WITH RANDOMNESS:

PROBABILISTIC ALGORITHMS FOR CONSTRUCTING

APPROXIMATE MATRIX DECOMPOSITIONS
https://arxiv.org/pdf/0909.4061.pdf

2/ Sharp bounds on randomized projection error (Corollary 1.5):
Randomized Algorithms for Low-Rank Matrix Factorizations:

Sharp Performance Bounds

https://arxiv.org/pdf/1308.5697.pdf

3/ Indirect tall-and-skinny QR algorithm (the one implemented) :
Tall and Skinny QR factorizations

in MapReduce architectures
http://inside.mines.edu/~pconstan/docs/constantine-mrtsqgr.pdf

4/ Direct tall-and-skinny QR algorithm (not the one implemented, but good analysis):
Direct QR factorizations for tall-and-skinny
matrices in MapReduce architectures
https://arxiv.org/pdf/1301.1071.pdf

5/ Randomized PCA algorithms (with implementation in Spark):
Randomized algorithms for distributed computation

of principal component analysis and singular value
decomposition

https://arxiv.org/pdf/1612.08709.pdf
https://github.com/hl1475/svd (branch testSVD)



