criteo

Billion-scale
recommendations
oh Spark

criteo

Motivation

criteo
Criteo business is personalized

advertising

=) 'i e criteo

* User icons designed by Freepik

criteo
At tera-scale

1 bln

worldwide sroducts

criteo

We want to know...

. criteo
Which products are

more similar?

—_——
|

, criteo
Which users have

similar product history?

* User icons designed by Freepik

criteo

Which products from Ebay can we
recommend to those you have
history at VertBaudet?

-
eb v
-~
Ve
e
/7
/

T
~

criteo

The standard approach

criteo
Underlying data => user

timelines
-

* User icons designed by Freepik

criteo
Implicit feedback personalized

recommendations

U; - user ? No explicit feedback, but interactions of

. _users with items (views, clicks, sales, etc.)
v; - 1tem 7

criteo
Factorize user-item matrix

ltems
I 2 T ... m
I |53 1| 2 |
2z 2 4
Users :| | |5 |

Quality

Plethora of method

VAE CF
NCE W-ALS
W-SGD
BPR

PureSVD

Scalability

criteo
S

criteo
Mostly tiny datasets used

ML-20M Netflix MSD criteo

of users 136,677 463,435 571,355
of items 20,108 17,769 41,140 3 bln users
of interactions 10.0M 56.9M 33.6M 1 bln items

% of interactions 0.36% 0.69% 0.14%

criteo

Similarity SVD
approach

1/ Build the similarity matrix

For example, PMI, pointwise mutual information, is a
measure of association between a pair of discrete variable
values

PMI; ; == log P(()“v(’),) log k

PM]I; ; = 0 when P(u;,v;) =0

2/ Truncated SVD and kNN

PMI=USV?T

U is a user factor matrix
V is an item factor matrix

U; .SV is scores of all items for a particular user

Comparison between

methods

Netflix dataset, ratings 4+

Method NDCG@100 Training time, secs
Most popular 0.158 0

PureSVD (2012) 0.340 3

PMI SVD (ours) 0.348 (Cl ~0.002) 3

W-ALS (2008) 0.352 84

VAE-CF (2018) 0.386 5580

criteo

Scalable truncated
SVD

criteo
Step 1 - tall-and-skinny projection
that captures most of the action

A - TSV~ ||[A—QQ A

Where || - || is spectral norm (the largest eigenvalue)

And @ is low-rank and orthonormal

criteo

Step 2 - SVD of k x k matrix gives
us everything

We can decompose Q' A part of QQT A = Q(ﬁ SvT)

criteo

Step 2 - SVD of k x k matrix gives
us everything

We can decompose Q' A part of QQT A = Q(ﬁ SvT)
notice that by uniqueness of [/ = QU

criteo

Step 2 - SVD of k x k matrix gives
us everything

We can decompose Q' A part of QQT A = Q((}' SvT)
notice that by uniqueness of [/ = QU
and finding U is cheap!

criteo

Step 2 - SVD of k x k matrix gives
us everything

We can decompose Q' A part of QQT A = Q((}' SvT)
notice that by uniqueness of [/ = QU
and finding U is cheap!

(QTA)T = QR = Q(VSUT)

Algorithm Criteo

Algorithm criteo

1/ Generate random matrix G € R™* (k+p)

with values drawn independently from gaussian distribution
where k - target approximation rank, p - oversampling

Algorithm Criteo

1/ Generate random matrix G € R™*(k+p)

with values drawn independently from gaussian distribution
where k - target approximation rank, p - oversampling

2/ Multiply by A several times: Q = (AAT)7AG

orthogonalizing columns after every multiplication Q = QR

Algorithm Criteo

1/ Generate random matrix G € R™*(k+p)

with values drawn independently from gaussian distribution
where k - target approximation rank, p - oversampling

2/ Multiply by A several times: Q = (AAT)7AG

orthogonalizing columns after every multiplication Q = QR

3/Find U by B := QTA; BT = QR = Q(VSUT)

Algorithm Criteo

1/ Generate random matrix G € R™*(k+p)

with values drawn independently from gaussian distribution
where k - target approximation rank, p - oversampling

2/ Multiply by A several times: Q = (AAT)7AG

orthogonalizing columns after every multiplication Q = QR

3/Find U by B := QTA; BT = QR = Q(VSUT)

4/ Return U := QU

criteo
Approximation error bound

With n=1019, k=100, p=30, g=3:

1A — QQTA|| < 4.19 x 4.

Meaning that R-SVD with k=105 will be as
good as full SVD with k=100 even if singular
values do not decay

Witten et al., 2013, Randomized Algorithms for Low-Rank Matrix Factorizations: Sharp Performance Bounds

criteo

Implementation

criteo
Distributed operations

1/ Generate random matrix G € R™**

2/ Mutltiply dense B by single block C' € RF**

3/ QR-decomposition of dense B € Rmxk

4/ Multiply sparse A € R™™ by dense B € R™**

criteol..

Distributed block-matrix

. Block-matrix

Partition

criteol..
Generating random matrix

Create empty partitions Fill-in with random values

criteo

Tall-and-skinny multiplication

by a single block

Use efficient broadcasting

Tall-and-skinny QR- criteot.

decomposition

Level 1 Level 2

i Constantine et al., 2013, Tall and Skinny QR factorizations in MapReduce architectures

B=0OR

criteol..
Square sparse by tall-and-

skinny dense multiplication

T
. AEER

EEEE
T 1

criteol..

1/ Shuffle pattern

Send required blocks of B to
every partition of A

Pros: easy to implement

Cons: shuffle-size is B times
number of row partitions in A

criteol..
2/ Column-partition zipping

A is column-partitioned, B is row-
partitioned. Use zipPartitions method

Pros: no shuffle

Cons: even with single column in

. partition, we need to store in

memory equivalent to the size of B

criteol..
3/ Multiplexed RDDs column

zipping

Split A into multiple RDDs by rows.
Do column-zipping on every RDD

Pros: no shuffle

Cons: overhead on splitting of A
‘l‘l L

criteo
Properties of our solution

1. Can be expressed in MapReduce / Spark API
2. Memory requirements independent of size

3. Deterministic results

criteo

Clone, fork, send PRs

github.com/criteo/Spark-RSVD

criteo

Questions?

1/ Randomized methods to capture the main action of a matrix:
FINDING STRUCTURE WITH RANDOMNESS:

PROBABILISTIC ALGORITHMS FOR CONSTRUCTING

APPROXIMATE MATRIX DECOMPOSITIONS
https://arxiv.org/pdf/0909.4061.pdf

2/ Sharp bounds on randomized projection error (Corollary 1.5):
Randomized Algorithms for Low-Rank Matrix Factorizations:

Sharp Performance Bounds

https://arxiv.org/pdf/1308.5697.pdf

3/ Indirect tall-and-skinny QR algorithm (the one implemented) :
Tall and Skinny QR factorizations

in MapReduce architectures
http://inside.mines.edu/~pconstan/docs/constantine-mrtsqgr.pdf

4/ Direct tall-and-skinny QR algorithm (not the one implemented, but good analysis):
Direct QR factorizations for tall-and-skinny
matrices in MapReduce architectures
https://arxiv.org/pdf/1301.1071.pdf

5/ Randomized PCA algorithms (with implementation in Spark):
Randomized algorithms for distributed computation

of principal component analysis and singular value
decomposition

https://arxiv.org/pdf/1612.08709.pdf
https://github.com/hl1475/svd (branch testSVD)

