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Liubov Kapustina is a data scientist with more than 10
years’ experience in the industry. She has experience
In risk scores and predictive modeling in Banks and in
consulting. She has wide experience of realized real
production projects with Al and Data science. She also
participated in the Marketing Revolution 2015 and Al
Ukraine 2015 conferences as a speaker. She is
member and speaker in Kiev Big Data Community.

https://www.linkedin.com/in/liubov-k-03164525/
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lgor Yaroshenko is young and ambitious data scientist
with strong technical background. He has experience
In bank industry and e-commerce projects. He has
wide experience of realized real production projects
with Al and Data science. Igor has participated in the
conference Nordic Business Day 2016 as a speaker
with talk “Data Science innovation in Agriculture
(smart hive)” and Kyivstar Big Data Hackathon.

https://www.linkedin.com/in/igor-yaroshenko-0468b369/
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mobile banking online banking

over 3 MillioNn active
users per month

400+ financial institution
clients
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SPEED, FAST AND CHEAP TRAINING AND ACCURACY

Why are these requirements so important?

Firstly, the user must get permission or be prohibited from the transaction in
real-time.

For a backend serving requests from multiple clients, C# with just-in-time
compilation is incomparably more efficient than Python.

Secondly, there are very few examples of fraud, and they are often unique. It's
like a flu virus: once we have taught the model to define one type, a new type
can immediately appear.

How quickly should the model learn when new data is available?
As soon as possible!

Microsoft Cognitive Toolkit library trains LSTM-models up to 4 times faster than
TensorFlow, it parallelizes the processes and uses the server’s resources more
effectively and efficiently. In this way we can train the model faster and
cheaper.

Under The Nilson Reporter, in 2017, for every $100 spent, 7.2 cents is lost due
to fraud, therefore the fraud prevention cannot cost more than this, otherwise it
will become more expensive than the fraud itself.

Thirdly, the accuracy of TensorFlow and CNTK backends are similar across
all benchmarks, and in some of it CNTK is better.
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C# could have a big draw near this

respect. C# is enforced as compiled
Performance language. If we talk about performance,

CH is faster due to its Common Language

Python is enforced as associate taken the
language. With Python implementation of
the JIT compiler, Python’s program execution

Infrastructure Framework. 's improved.
Single query: database-z?\ccess 15,470 4,398
responses per second, single query
Multiple queries: Besponses per 420,820 185,435
second at 20 queries per request,
Data updates: responses per second 6,688 4,390
at 20 updates per request
Plaintext responses per second 1,822,366 975,225
Fortunes, which is a test of read 45,230 20,414

performance
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Microsoft

NET

C# could have a big draw near this

. . Python is enforced as associate taken the
is enforced as compiled

language. With Python jpalamentation of
the JIT compiler, Pyt ocution
is improved.

Performance

Single query: database-access

. 4,398
responses per second, single query

Multiple queries: Responses per
second at 20 queries per request,

Data updates: responses per second
at 20 updates per request

Plaintext responses per second

Fortunes, which is a test of read
performance
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70000

_'we report 8 GPUs (2 machines) for CNTK as it is the only public
60000 - toolkit that can scale beyond a single machine. CNTK on Azure
GPU Lab @n scale beyond 8 GPUs across multiple machines with

50000 superior digtributed system performance.

40000

30000

20000

Theano only supports 1 GPU
| | 1 | i
. = ]
CNTK Theano TensorFlow Torch 7 Caffe

M1GPU ®m1x4GPUs m2x4 GPUs(8GPUs)
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i CNTK IS MUCH FASTER!
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Speed of Bidirectional LSTM Approach on IMDb Data

B CNTK

500 B TensorFlow
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Average Epoch Runtime (seconds)

CNTK TensorFlow
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Performance of Bidirectional LSTM Approach on IMDb Data
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Normally the accuracy increases as training proceeds; Bidirectional LSTMs take a long time to train to

get improving results, but at the least both frameworks are equally performant.
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PART II: CNTK + C# IN REAL LIFE PROJECTS: FRAUD DETECTION

Architecture Overview

MFM Mobile App Web-browser
N
k1 Core D D
application
Y User aciivites log MFM Environment
REES version > 4.8b
version < 4.8b
InternalUserID,
MemberNumber
OFX Server
MEM MW MEM Layered Fraud_CuntruI
o Admin Tool
Authentication (Orchard CMS)
Secure Store Post
User activities log WENETER User activities,
FeEE I, Risk Ranking
DataFeed Web User Events Fraud
API activities Queue G Feedback
T ' Risk Score
User activities Fraud Admin
Web API
Consuming csv
csv Queue Usage Data
Feed App

Fraud Control Fraud Admin
User activities, csv API AP|

User

activities Risk
IGICIGEY Score
Folder

User
csv-file

’ Dat activities Fraud Control

sage Data . Engine
Risk Score

FTPClient Feed D

Encrypted and\or

compressed csv-file MLR EI’]VII’OI’]ment

SFTP Folder

Overview
Detect, Predict, and Prevent Fraud, in real-time.

Fraud Control is designed to learn and react to each member's banking usage, to
keep accounts safe and fraud under control.

*Detect suspicious behaviors
» Fraud Control's eyes are unsupervised and semi-supervised machine
leaning techniques to cluster and classify out-of-pattern account-level
behaviors

*Predict fraud risk
» Fraud Control's brain is neural network ensemble that learns to score
suspicious behavior based on admin feedback to fraud discovery and user
performance on event-triggered layered authentication

*Prescribe preventative countermeasures
» Fraud Control's hand is an API that integrates with the banking channel's
layered authentication, to safeguard the app from fraudsters

*Discover new ways to control fraud
« Fraud Control's face is a reporting and visualization tool to help admins
break down user activity, global alerts, specific fraud threats, and layered
authentication performance.
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CC

What does Fraud Control
see?

Real-time User Behaviors

*Member ID

*Session ID

*Date & Time

*User Operation

*Screen / Feature / Operation Group
*App Response

*Server Response Duration
*Transaction Value (where applicable)
*Application Version

Client

*Device IP Address

*Device GPS (if enabled by end-user)
*Device OS Version

*Device Model

What does Fraud Control find?

*Surprising location

*Using VPN

*New or unconventional device
eLarge or suspicious money
movement

* Activity at atypical time or date
*Unusual user behaviors
*Suspicious app responses
*Etc...
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ACCESS SOFTEK, INC

What does Fraud Control do?

«Constantly learns from every data
point sent from all devices and
servers accessing the banking app

*Detects and scores suspicious
behavior on the account

Integrates with Layered
Authentication to control access to
app functions

*Constantly learns from feedback to
improve its predictions over time
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Five Fraud Risk Components

1. User Behavior Risk

2. Location Risk

3. Money Movement Risk
4. Time Risk

5. Device Risk

Concept is follows:

1. Separate 2 types of factors Linear and Matrix(ordered by steps)
2. For Linear - analyses distribution and “typical"

3. For Matrix - probability to meet event "A" on step "N"

4. Analyze by Model difference from current to typical

5. Aggregate all metrics on Session level

6. Choice how calculate 5 sub-scores in final Fraud Risk Score



User Behavior Risk

Low fraud risk sessions

Session 1 . 30 95 19 12
Session 3 . 32 89 20 12
Session 4 . 25 93 22 10
0 50 100 150 200 250
M Finger Print Login M Login ® Money Transfer
Screen balance B Screen Bill Pay M Screen balance

B Money transfer B Screen balance B Logout

Risk Score

0.226

0.114

0.092

0.007




User Behavior Risk

High fraud risk session

Session 2 . 27 -

0 50 100

150 200 250
M Finger Print Login M Login B Money Transfer
Screen balance B Screen Bill Pay M Screen balance

B Money Bill Pay B Screen balance B Logout

Risk Score

0.226

0.114

0.092

0.007

0.981
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Other Risk Components

Location Risk
e - |at-lon coordinates from device = lat-lon from IP-address
e - lat-lon changing faster than plane speed ~800km/hour

T Money Movement Risk
$ * - Unusual amounts of money transfer
* - Unusual directions of money transfer

Device Risk
* - New device never used before
e - Unusual device combination, based on total device matrix

Time Risk

O, ® * - Unusual time of day for current customer
W * - Unusual time of day for all customers
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Strengths of the fraud detection tool

ML Model for analyzing user behavior to detect out of pattern activity.

Contains a system for learning from the feedback - if you return to model results marked as fraud or falsely

identified fraud
It analyses based on the individual user’s behavior

Begins to work even on a small amount of data (the problem of a cold start is solved), does not require a large

number of cases of confirmed fraud
Done in real time on a session to stop fraud before it happens not after the fact historical review.
We can monitor multiple channels, mobile, online and others.

Configurable thresholds for Accept, Review, Stop transaction.
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Welcome, Administrator | {3} Settings [= Sign Out

Fraud Control / Fraud Control Setting

Fraud Control Settings

||| Support Tools

Fraud Control Risk Score Threshold

* Detection

* Dashboard m Low risk: 40
No risk

* Fraud Control Settings _' 5
e ———

*  Admin 100 90 80 70 60 50 40 30 20 10 0

* Cases )
~ Show less details Save changes

Customization Tools

fi. Orpheus Reports

PayPal Reports ngh I’ISK LO\J.’-.»." ||b k N (0] HS |’(

Site Settings

Orpheus Import/Export

» -
Technician Resources

o« Orchard Functions

357 sessions by 3 months
0.5% of all sessions
~ 3 sessions per day

8568 sessions by 3 months
12% of all sessions
~ 71 sessions per day

12852 sessions by 3 months
18% of all sessions
~ 107 sessions per day

49623 sessions by 3 months
69.5% of all sessions
~ 414 sessions per day
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Engagement rate calculation

1) We have 37 features like session_interval, n_login_fails_login etc.
Based on the received features we calculate the values of 3 dimensions

_ 1 : o 1 _ 1
Frequency/recency = Ty (1) Depth or intensity = o757y (2)  Money movement = T gD (3)

2) When the values of Frequency-Recency, Depth-Of-Intensity, Money are calculated, we form the preTarget
variable as Frequency-Recency + Depth-Of-Intensity + Money and sort the entire array of data by this value.
We take for training the model only 20% of the sample.

3) 10% of the top in our preTarget variable is denoted as the Target variable = 1,
10% of the bottom by the preTarget variable is denoted as the Target variable is O.
This data is submitted to the input for model training.

4) For the forecast whole set of calculated features is submitted to the input of the model, and the Engagement
Rate for the user is calculated for each user.
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User segmentation by Engagement

This chart displays segmentation of users based on their level of engagement with your app over the chosen time period

VIP Users who use the application frequently (and recently) and use many features
Growing Users who use the app periodically but only for some features

Users who use the app frequently but only for a few features

Users who previously used the many app features but rarely use the app lately

Users who previously used the app and didn't use many features

Users are classified into segments to a specific date using the following logic:
Frequency of use: This property indicates how frequently the user uses the app. It is calculated based on the following factors:

* average interval between sessions (for the previous [day, week, month])
® average session duration (for the previous [day, week, month])

® time since the user's last login (recency)

The possible values for each factor are 1, 2, or 3 where "3" represents high frequency and "1" represents low frequency.
Depth of usage: This property shows how deeply each user uses the app based on the number of features utilized in a session. It is calculated based on the following factors:

* number of unique events (for the previous [day, week, month])

® average time spent on one event (per [day, week, month] before the date)

* average, min and max event frequency - how often the event happens compared to other events (for the previous [day, week, month])
* variance of event frequency - deviation from the usual pattern of event frequency for the user (for the previous [day, week, month])

* number of devices used by the user (for the previous month)

* number of users per device (for the previous month)

* number of time the app was deleted and reinstalled (for the previous month)

The possible values for each factor are 1, 2, or 3 where "3" represents deep usage of the app and "1" represents superficial usage of the app.



Frequency cof use VIP
23 Growing
Newcomers
Lost
One-off

User segmentation by Engagement

This chart displays segmentation of users based on their level of engagement with your app over the chosen time period

VIP Users who use the application frequently (and recently) and use many features
Growing Users who use the app periodically but only for some features

Users who use the app frequently but only for a few features

Users who previously used the many app features but rarely use the app lately

Users who previously used the app and didn't use many features

, INC
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0 T T T

Lost One-off Newcomers Growing

Migration 75 user(s) from segment "VIP" to segment “Growing"
Time since the user”s last login (recency) decreased on 121.18%

Min event frequency for the previous day decreased on 6.71%

Min event frequency for the previous week decreased on 6.71%

Min event frequency for the previous month decreased on 6.71%

Average event frequency for the previous day decreased on 6.05%



PART Il: CNTK + C# IN REAL LIFE PROJECTS: USER ENGAGEMENT

INC

10000

9000

8000
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6000
== Lost
=== One-off

5000 Newcomers
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4000 = VIP

One-off (31)

3000

2000

1000

0 . . . e .
Lost One-off Newcomers Growing VIP

Migration 31 user(s) from segment “"One-off" to segment "“VIP"
Number of unique events for the previous day increased on 12.83%
Number of unique events for the previous week increased on 12.83%

Number of unique events for the previous month increased on 12.83%
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From Date To Date Churn Threshold
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From Date
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Count of Member Number by Date and Probability Of Churn q vV Vv

Sep 14,2018 ~ Sep 13,2018 v Sep 12,2018 v Sep 11, 2018 ¥ Sep 10, 2018 -~ Sep 9, 2018 v Sep 8, 2018 ¥ Sep 7, 2018 v Sep 6, 2018 ¥
Probability of Churn Member Number Member Number Member Number Member Number Member Number Member Number Member Number Member Number Member Number
96 55 55 52 49 52 30 45 86 59
95 61 48 50 40 54 40 36 60 52
94 64 57 61 66 37 30 43 54 59
93 56 61 46 42 54 53 46 80 55
92 51 65 51 62 61 35 26 67 66
91 57 52 61 51 52 46 54 71 46
90 42 46 78 68 56 37 47 61 60
89 52 59 48 56 54 24 50 58 61
88 56 64 62 59 53 40 48 98 52
87 50 56 48 58 51 46 41 60 61
86 44 43 43 52 52 42 41 54 60
85 48 46 56 52 56 33 39 80 58
84 80 60 52 50 57 31 61 69 44
83 48 52 53 62 48 41 45 75 65
82







