Learning Cheap and Novel Flight Itineraries Dima Karamshuk Skyscanner

AI UKRAINE

V INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA SCIENCE APPLICATIONS

18

How much time you spend to choose a flight?

•3.5h European travellers spend on average to find a perfect flight, often longer than the flight itself <u>https://goo.gl/74CivT</u>

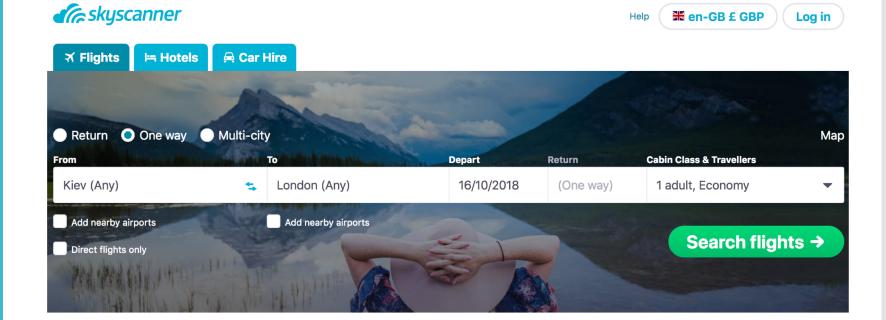
•3.5h European travellers spend on average to find a perfect flight, often longer than the flight itself <u>https://goo.gl/74CivT</u>

How much of you choose airline by price?

•3.5h European travellers spend on average to find a perfect flight, often longer than the flight itself <u>https://goo.gl/74CivT</u>

• 37% of users choose airlines by competitive price, more want to see cheapest price for comparison <u>https://goo.gl/8UX3vx</u>

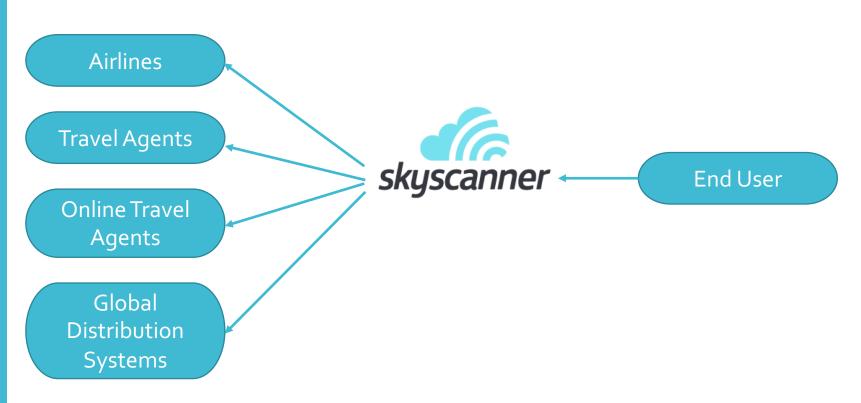
Skyscanner



Skyscanner in a Nutshell

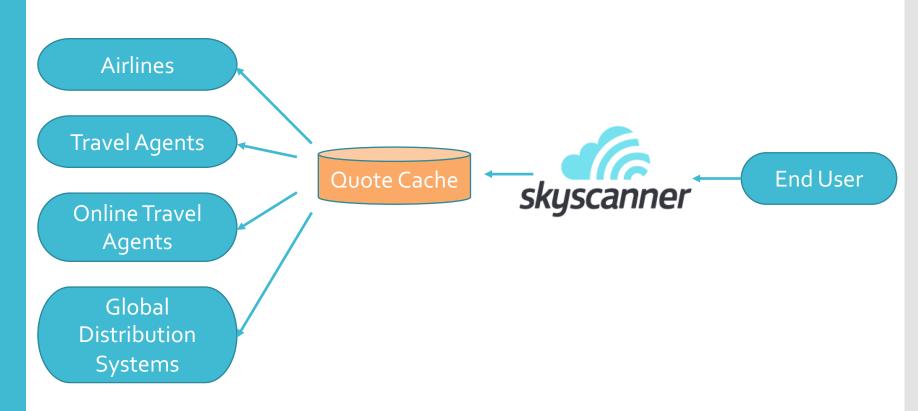
 Each user search triggers dozens/hundreds requests to partners resulting in a total of <u>7B/day quotes</u>

Skyscanner in a Nutshell



- Each user search triggers dozens/hundreds requests to partners resulting in a total of <u>7B/day quotes</u>
 - Repeated requests with <u>85% probability</u> return same price

Caching Quotes



Strong case for **<u>caching quotes</u>**:

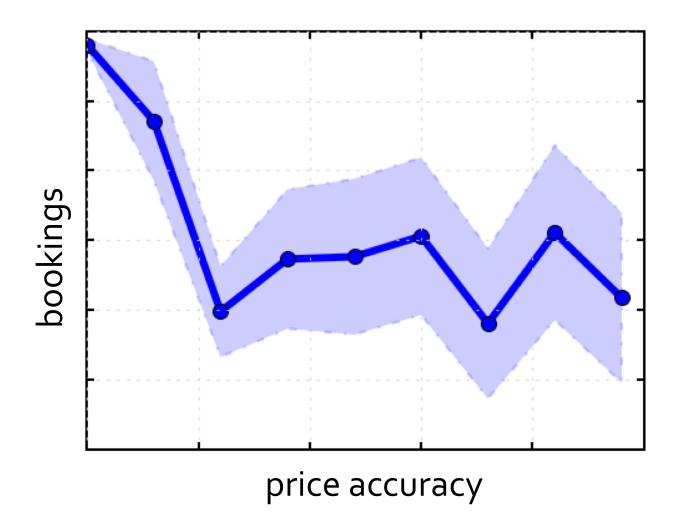
- reduced load on partners
- faster results to end users

Problem with Caching

Prices are changing dynamically, so, caching may **introduce inaccuracies**

Skyscanner

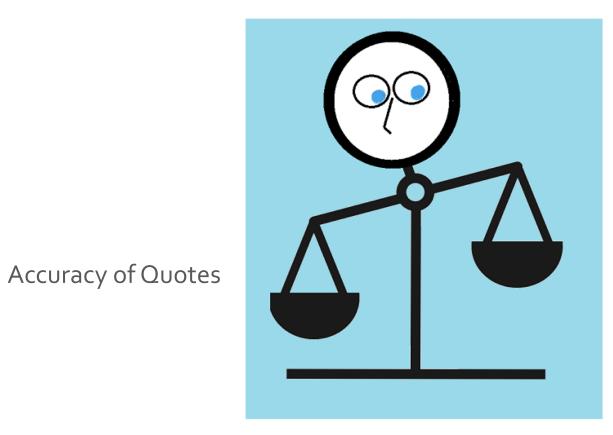
Checking this fare is still available



Bookings drop significantly even if the prices are slightly inaccurate

Analysis

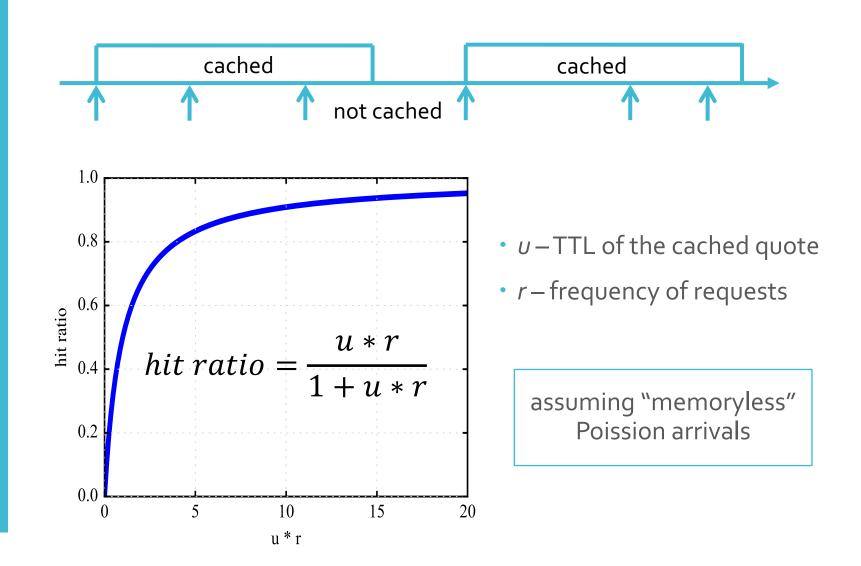
Caching Trade-off



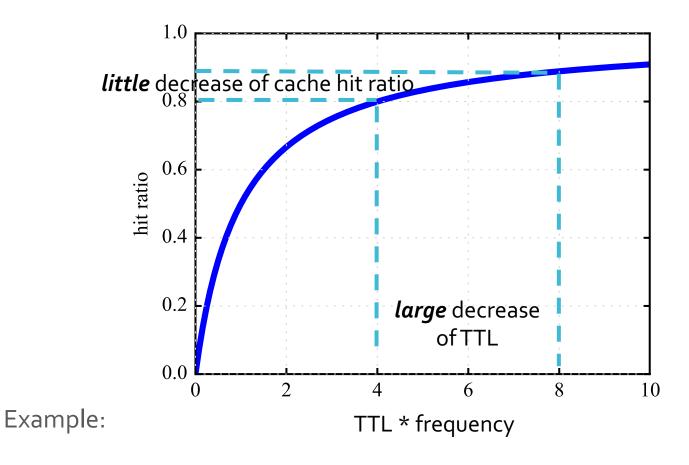
Load on Partners and Response Time

Optimal trade-off: Update prices only/always when they change

Erlang's Loss Model

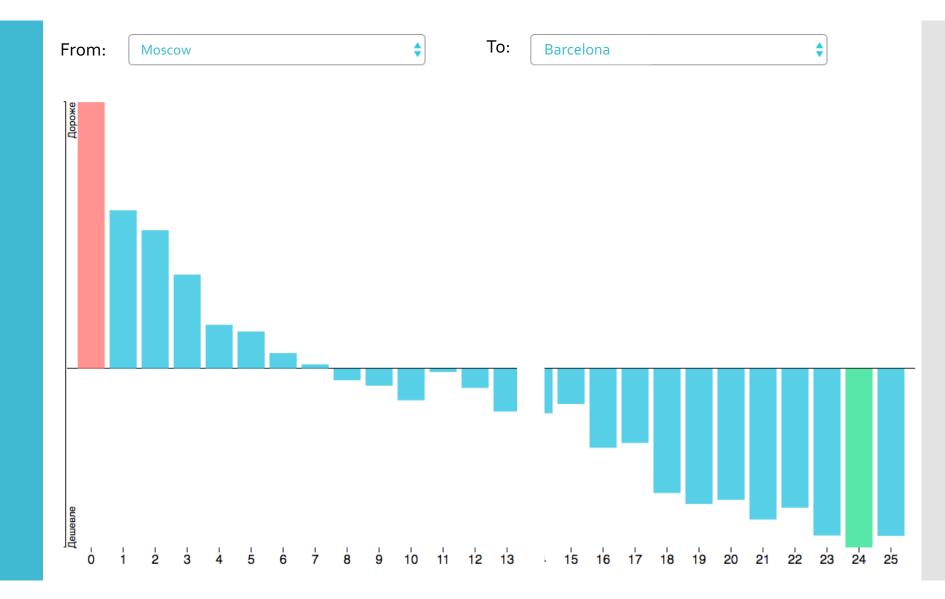


Simple Strategy

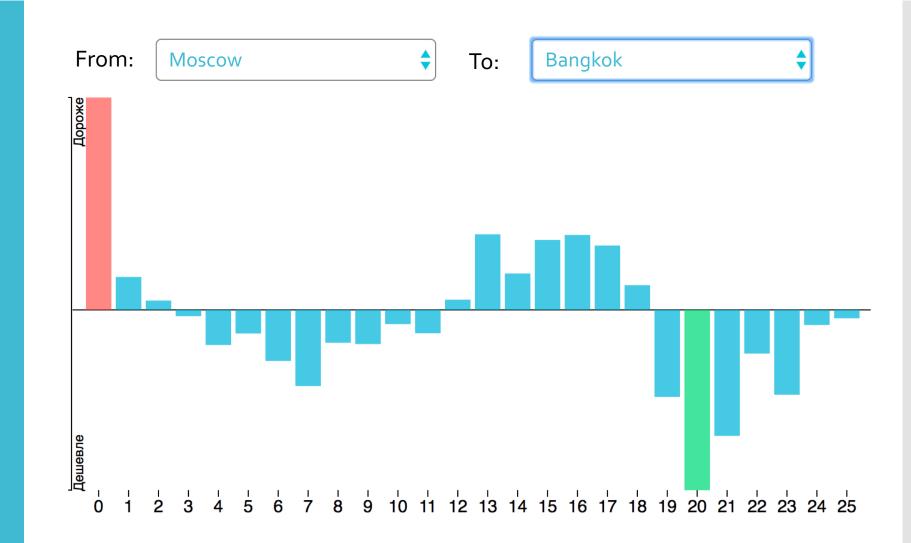


- *u* = 8h, *r* = 1/h, *hit ratio* = 88%
- if we decrease *TTL* by half (u = 4h) => *hit ratio* will decrease by only 8%
- at the same time we will <u>decrease</u> (by half?) the <u>average age</u> of cached quotes served to users

Price Volatility Not Easy



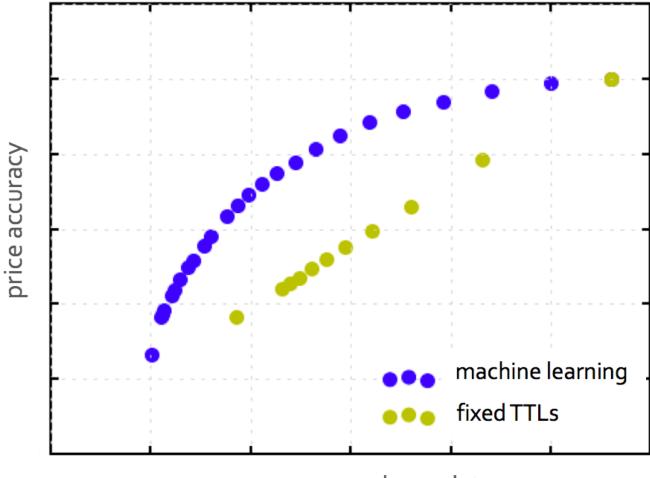
Price Volatility Not Easy



Predicting Price Volatility

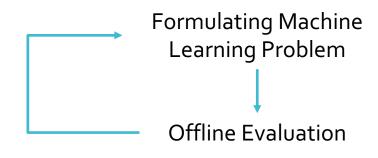
- 1. Approach N1: <u>constant</u> cache expiry times
 - simple to implement
 - does not accurately model price volatility
- Approach N2: <u>emulate pricing models</u> of each individual partner
 pricing models of some airlines are incredibly complex
- 3. Approach N3: <u>machine learning</u> approach
 best trade-off between simplicity and accuracy

Model Performance

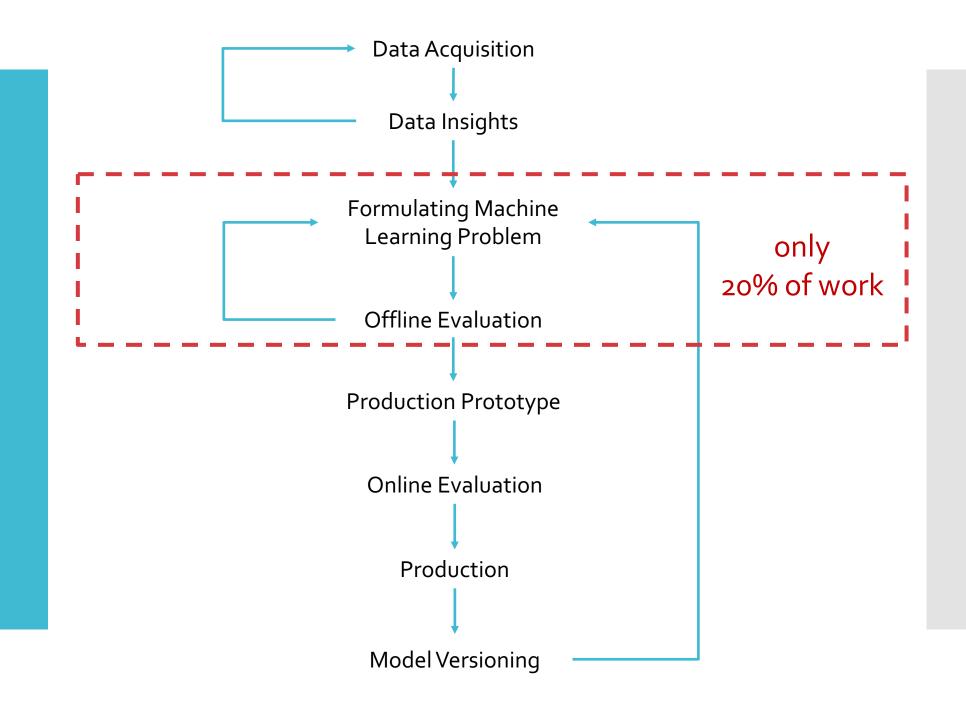


unnecessary cache updates

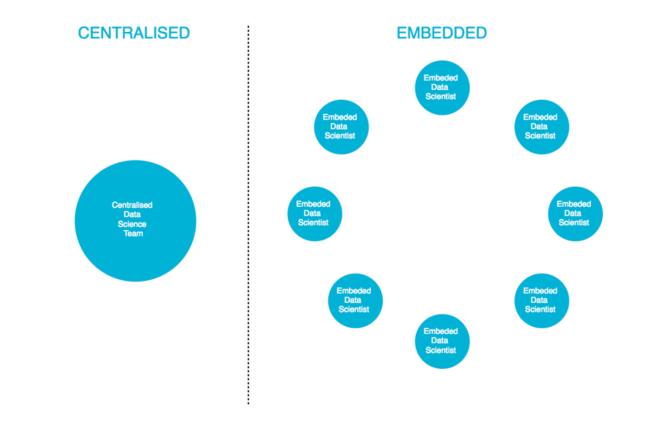
Data Science



Product Cycle



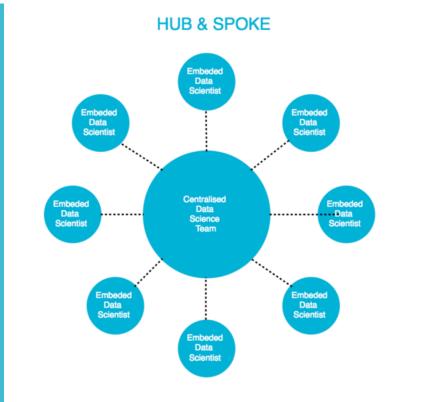
Data Science Structure



- + Great autonomy
- Risk of marginalization
- + Ensured utilization
- Lesser autonomy, focus on second-class tasks

https://goo.gl/5cdPjP

Hybrid Structures

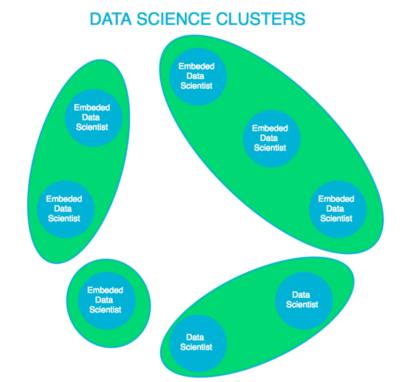


 part-time embedded, part-time autonomous

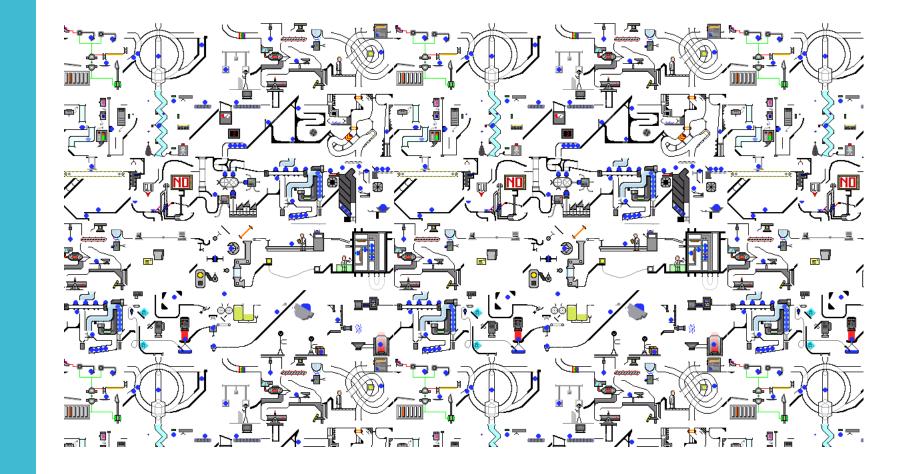
https://goo.gl/WJv8TR

 clusters of embedded data scientists focused on the same goal

https://goo.gl/mtQvyn



New vs. Optimizing Old Features

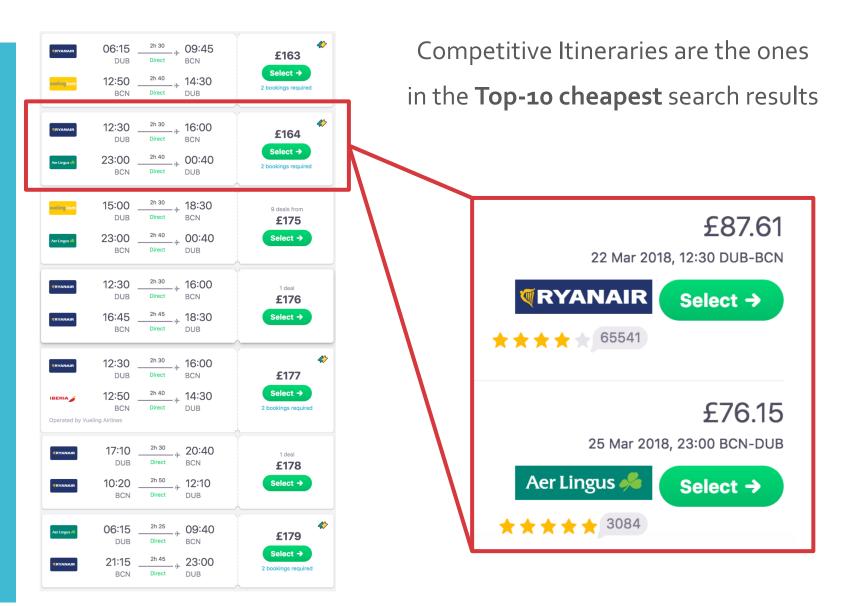


• it's easier to build new ML feature than optimizing what works OK already

Second Try: Constructed Itineraries

Constructing mixed-carrier itineraries

Competitive Itineraries



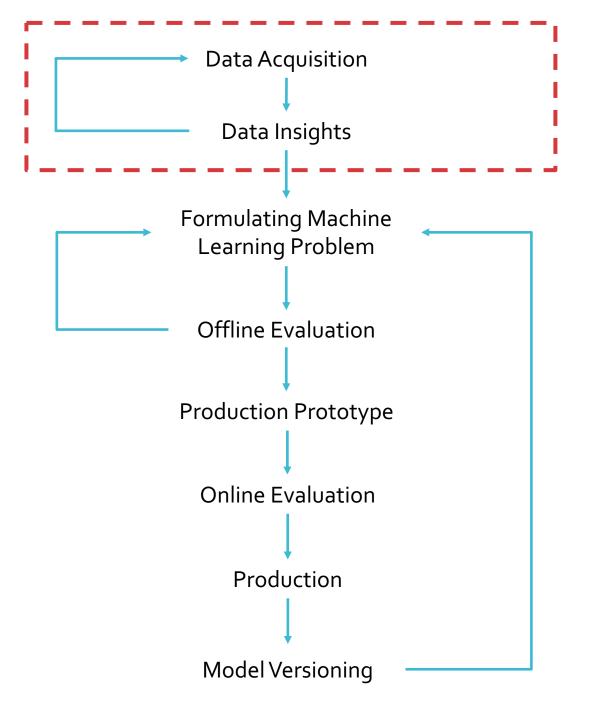
Potentially cheaper itineraries in more than half of all search results

Problem

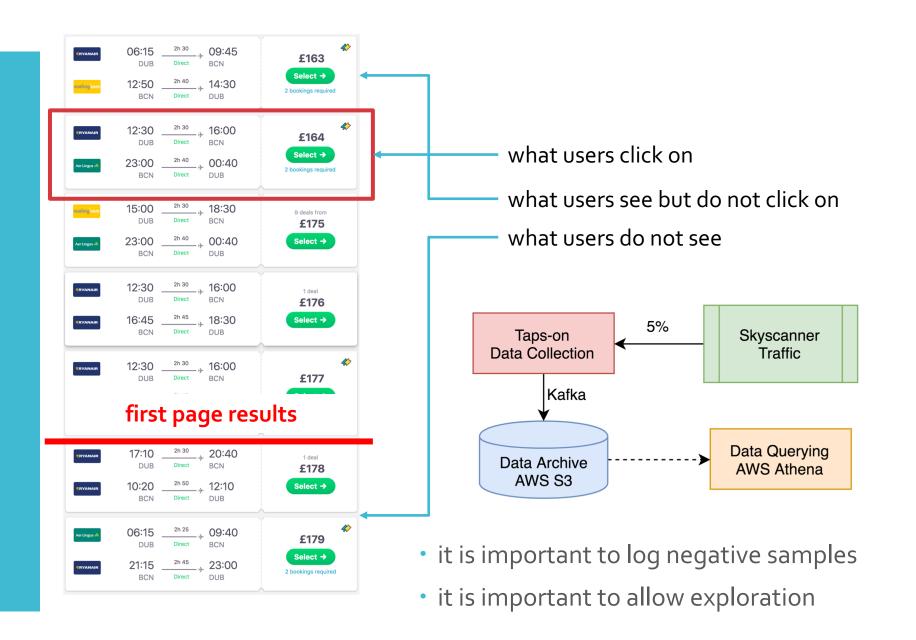
- Combinations require more queries to ticket providers
- Most of variants are not competitive

Solution: Only choose combinations which are likely to be competitive

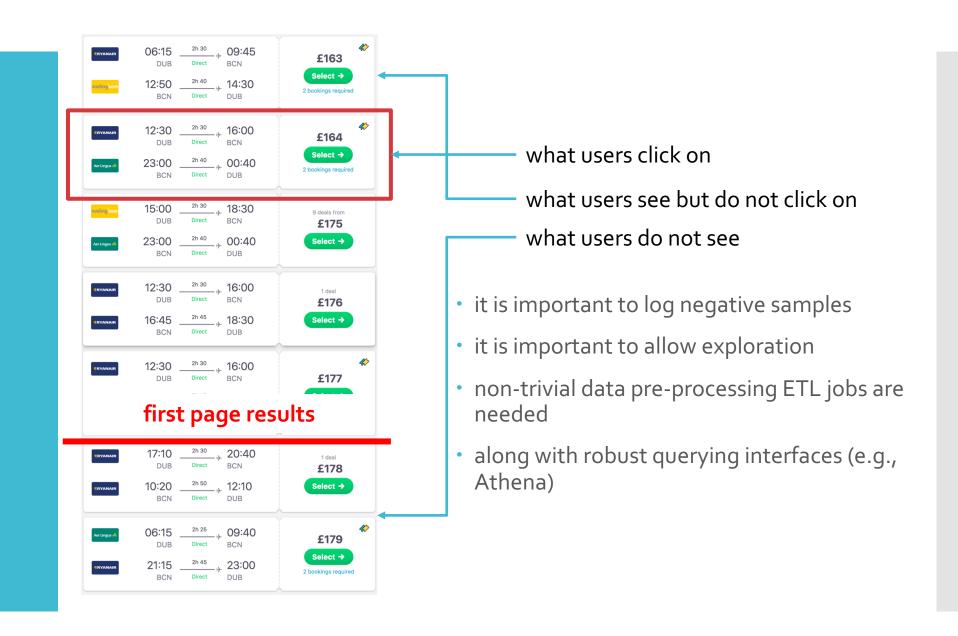
Product Cycle



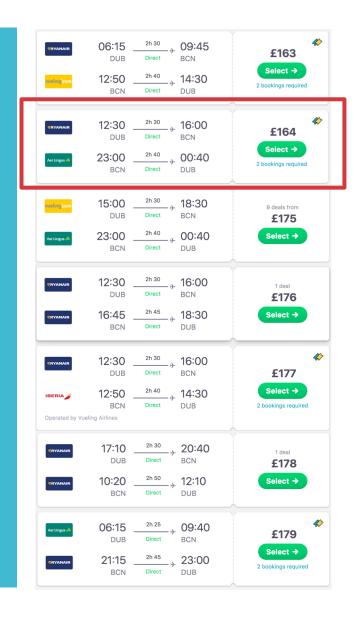
Logging



Logging



Competitive Combinations



Tips for booking your next flight

- good for last minute booking
- average savings of 9% on return ticket
- 90% of competitive combinations are from top-30% airlines
- good deals when flying from US, UK, Spain, Germany, Italy and other origins

Supervised Learning

Metrics

Coverage: How many of all possible cheap itineraries we recall

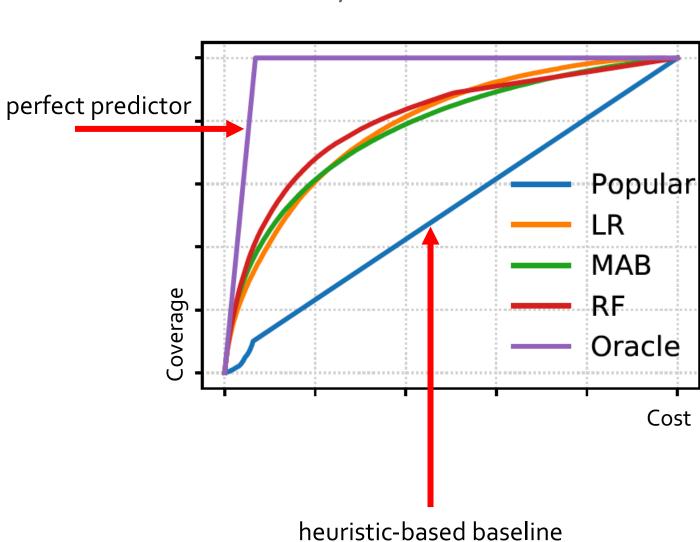
Cost: How much queries for flight quotes are required

Classify whether for a query **Q** a combination of partners (**X and Y**) is going to be in **Top-10 search results**

Dataset

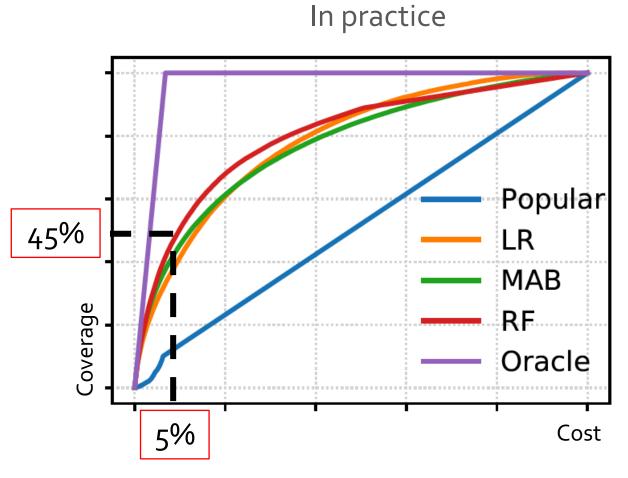
- sample all possible combinations for a share of searches
- collect examples of competitive and non-competitive combinations

Supervised Learning



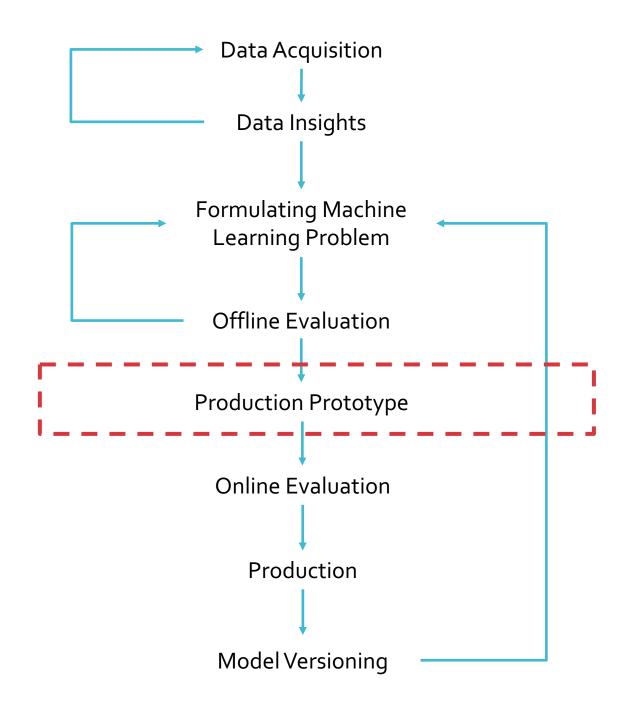
Use your favorite classifier

Supervised Learning

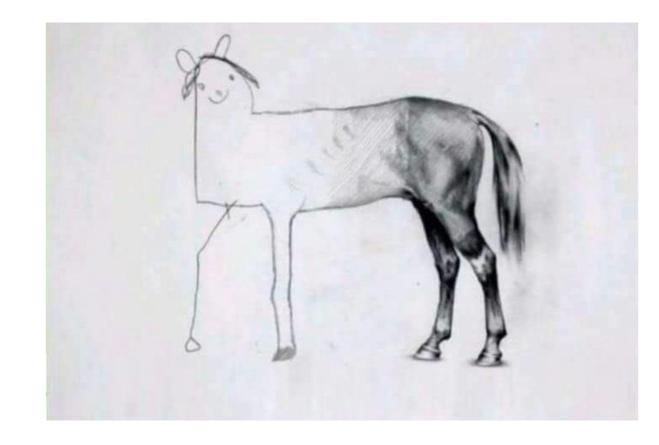


Tree ensembles (Random Forest) achieve good performs

Product Cycle

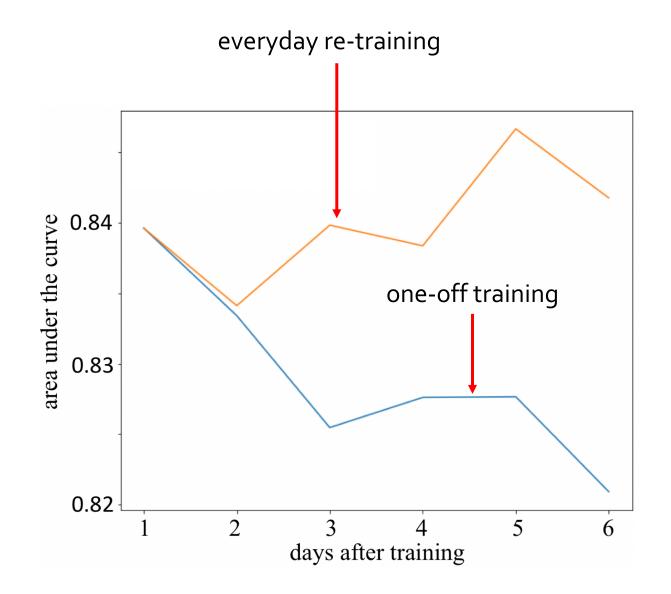


Lean Prototyping



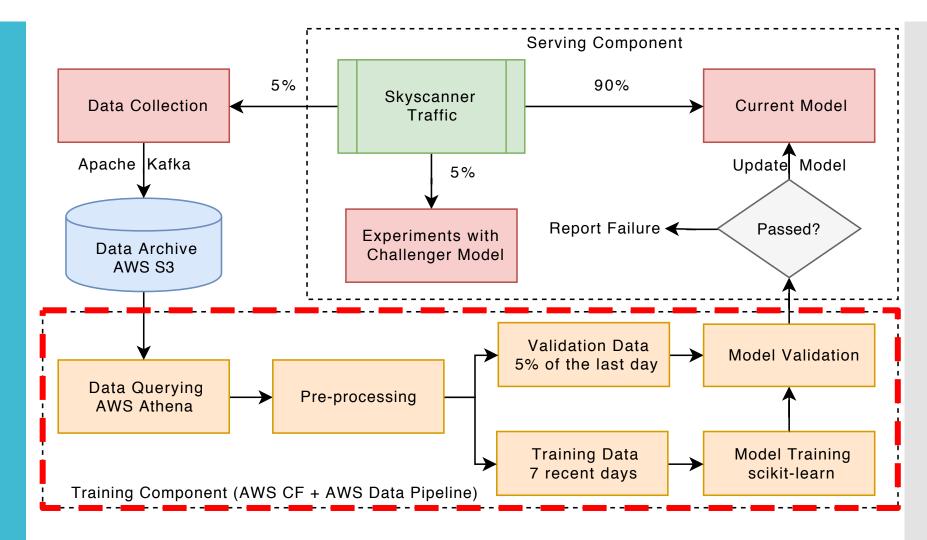
- simple model trained in a Jupyter Notebook
- very hacky setup in production on a tiny share of traffic
- proved the value of ML optimization

Model Staleness



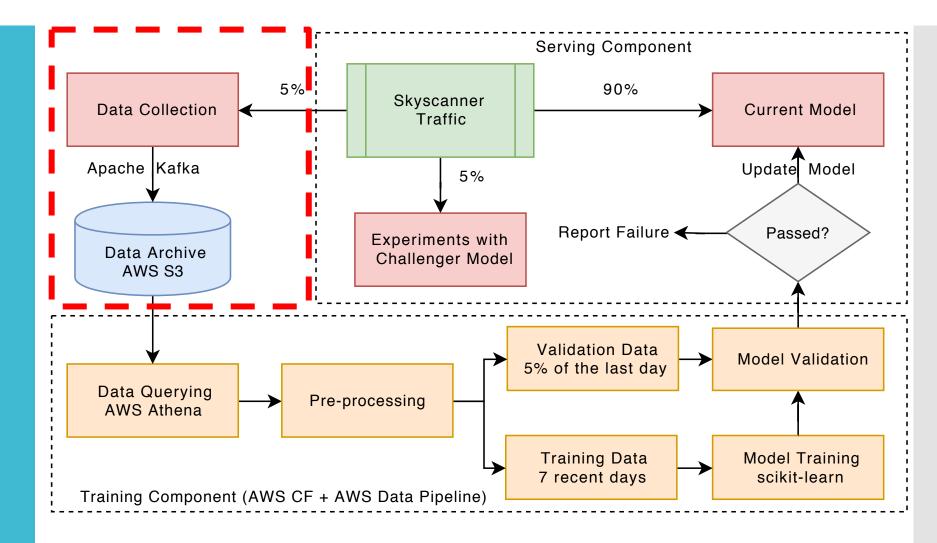
Performance of the model stales, hence needs to be updated regularly

Production Pipeline



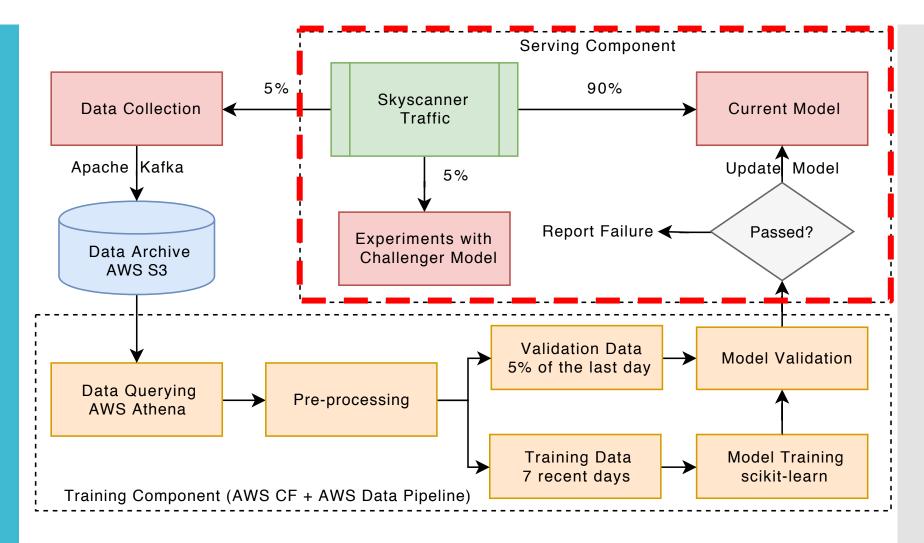
- re-train the model everyday against model drift
- run on a single large machine vs. distributed cluster

Production Pipeline



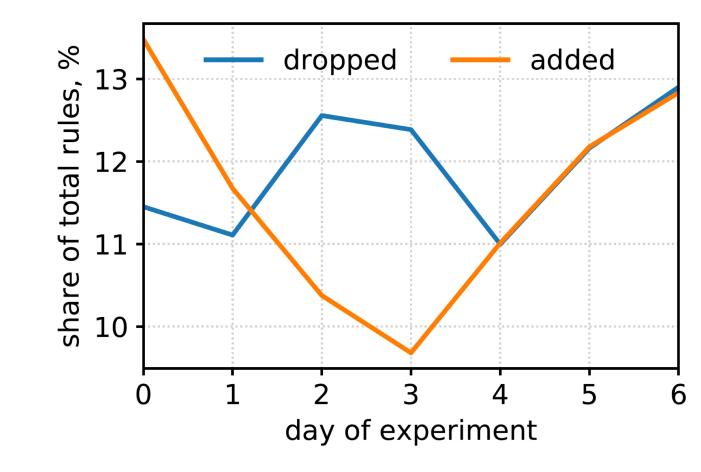
• sample all possible combinations on 5% of users' traffic

Production Pipeline



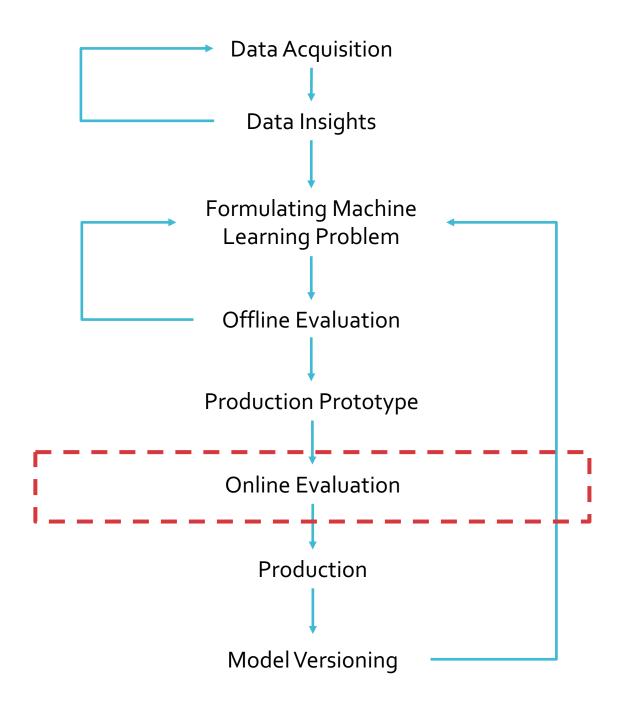
- update the model if it passes the tests and serve it to 90% of the users
 - leave 5% for A/B experiments with better models

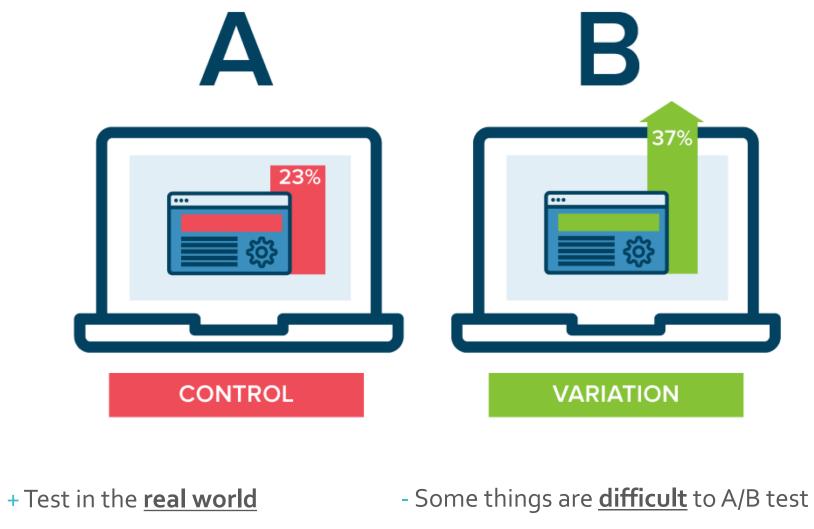
Temporal Stability



We need a mechanism to control temporal stability of the model

Product Cycle



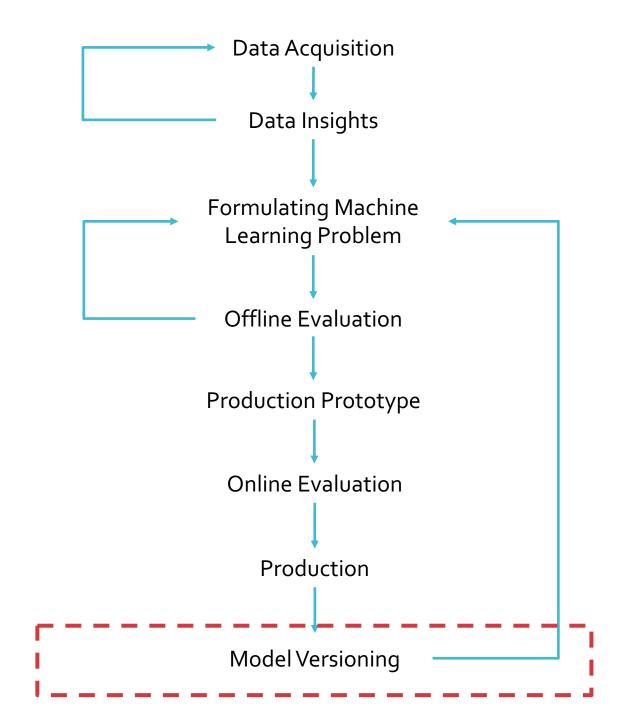


- + <u>Benchmark</u> in equal conditions C
- Online experiments might be **expensive**

Travelers First

- 45% of all competitive combinations for only 5% of the cost
- 22% of search results with cheaper itineraries
- 20% rel. increase in bookings on combination itineraries
- 0.74[%] rel. increase in user retention

Product Cycle



Can we improve performance with smart feature engineering?

Feature Engineering

¹ London
⁶ European
⁶ Trans-Atlantic

[1.0 0.9 0.1 ...]

[0.0 1.0 0.5 ...]

One-hot encoding

Better encoding

London Gatwick [100...0]

London Stansted [010...0]

Barcelona

[001...0]

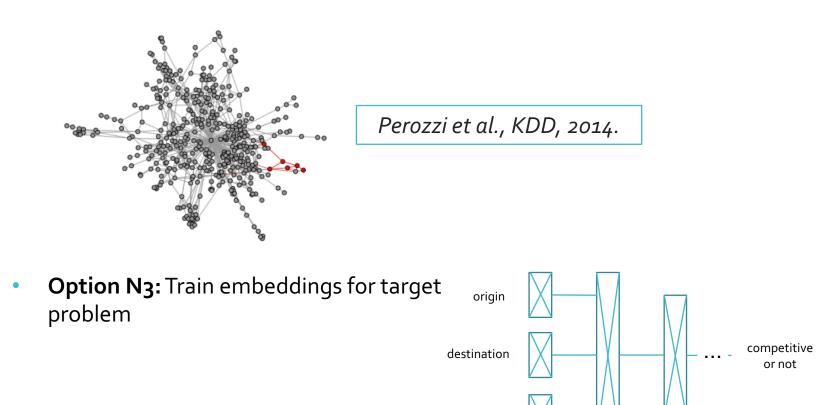
London Gatwick London Stansted

Barcelona

Location Embeddings

[London, Barcelona, Frankfurt am Main, New York,] ——— sentence

- **Option N1:** Every user's history is a sentence (think of Word2Vec)
- **Option N2:** Learn embeddings on graphs of locations



Location Embeddings

London Heathrow		Beijing Capital	
Airport	Similarity	Airport	Similarity
Frankfurt am Main	0.71	Chubu Centrair	0.91
Manchester	0.69	Taipei Taoyuan	0.90
Amsterdam Schipol	0.62	Seoul Incheon	0.90
Paris Charles de Gaulle	0.62	Miyazaki	0.88
London Gatwick	0.61	Shanghai Pudong	0.88

- Capture geographical proximity (Europe vs. Asia)
- Learn function of the airport (Heathrow and Gatwick vs. Stansted)
- Produce a slight improvement in prediction performance

Learnings

- focus on right problems which cannot be solved without ML or where ML gives 10x improvement
- **define the metrics and optimization objective** at the start of the project and stick to them thereafter
- **bootstrapping ML projects** requires 20% of modeling and 80% of engineering in the long run should be vice versa
- **lean online experiments** are important on early stages to make sure users engage with the product
- **ML behavior in production** reveals interesting problems which are not visible during offline modeling (e.g., temporal stability)

Join our Team!

Dima.Karamshuk@skyscanner.net on Twitter: **@karamshuk @SkyscannerEng**