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Planning a Trip 

How much of you choose airline 
by price? 

�3.5h European travellers spend on average to find a perfect 
flight, often longer than the flight itself https://goo.gl/74CivT
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Planning a Trip 

�37% of users choose airlines by competitive price, more want to 
see cheapest price for comparison  https://goo.gl/8UX3vx

�3.5h European travellers spend on average to find a perfect 
flight, often longer than the flight itself https://goo.gl/74CivT

https://goo.gl/8UX3vx
https://goo.gl/74CivT
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End User

� Each user search triggers dozens/hundreds requests to partners 
resulting in a total of 7B/day quotes

• Repeated requests with 85% probability return same price



Caching 
Quotes
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Travel Agents
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Global 
Distribution 

Systems

End User

Strong case for caching quotes: 

� reduced load on partners 

� faster results to end users 

Quote Cache



Problem 
with Caching 

Prices are changing dynamically, so, caching may introduce inaccuracies
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price accuracy
Bookings drop significantly even if the prices are slightly inaccurate



Caching 
Trade-off Accuracy of Quotes

Load on Partners   
and Response Time

Optimal trade-off: Update prices only/always when they change



Erlang’s Loss 
Model

cached cached

not cached
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� u – TTL of the cached quote

� r – frequency of requests 

assuming “memoryless” 
Poission arrivals 



large decrease 
of TTL

little decrease of cache hit ratio

TTL * frequencyExample:

� u = 8h, r = 1/h, hit ratio = 88%

� if we decrease TTL by half (u = 4h) => hit ratio will decrease by only 8%

� at the same time we will decrease (by half ?) the average age of cached 
quotes served to users

Simple 
Strategy
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Not Easy

From: To:Moscow Barcelona



Price Volatility 
Not Easy

From: To:Moscow Bangkok



Predicting 
Price Volatility

1. Approach N1: constant cache expiry times
� simple to implement 
� does not accurately model price volatility 

2. Approach N2: emulate pricing models of each individual partner 
� pricing models of some airlines are incredibly complex 

3. Approach N3: machine learning approach 
� best trade-off between simplicity and accuracy



Model 
Performance
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Product Cycle

Data Insights

Offline Evaluation

Production Prototype

Online Evaluation

Production

Formulating Machine 
Learning Problem

Model Versioning

Data Acquisition

only
20% of work



Data Science 
Structure

+ Great autonomy 

- Risk of marginalization

+ Ensured utilization

- Lesser autonomy, focus on second-class tasks

https://goo.gl/5cdPjP



Hybrid 
Structures

� part-time embedded, part-time 
autonomous

� clusters of embedded data scientists 
focused on the same goal

https://goo.gl/WJv8TR https://goo.gl/mtQvyn



New vs. 
Optimizing 
Old Features 

• it’s easier to build new ML feature than optimizing what works OK already



Second Try: 
Constructed 
Itineraries

Virgin

Delta

Dublin Barcelona

Ryanair

Aer Lingus

Barcelona New York

Ryanair American

Constructing mixed-carrier itineraries



Competitive 
Itineraries

Competitive Itineraries are the ones 

in the Top-10 cheapest search results

Potentially cheaper itineraries in more than half of all search results



Problem 
Global Distribution 

Systems

Online Travel 
Agencies

Airlines

Traveler

• Combinations require more queries to ticket providers

• Most of variants are not competitive 

Solution: Only choose combinations which are likely to be competitive
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Logging

what users click on 

what users see but do not click on 

� it is important to log negative samples

� it is important to allow exploration 

what users do not see 

first page results



Logging

what users click on 

what users see but do not click on 

� it is important to log negative samples

� it is important to allow exploration 

� non-trivial data pre-processing ETL jobs are 
needed

� along with robust querying interfaces (e.g., 
Athena)

what users do not see 

first page results



Competitive  
Combinations

Tips for booking your next flight

� good for last minute booking

� average savings of 9% on return ticket 

� 90% of competitive combinations are      
from top-30% airlines 

� good deals when flying from US, UK, 
Spain, Germany, Italy and other origins



Supervised 
Learning

Classify whether for a query Q a combination of partners (X and Y) is 
going to be in Top-10 search results

Coverage: How many of all possible cheap itineraries we recall

Cost: How much queries for flight quotes are required

Metrics

Dataset

• sample all possible combinations for a share of searches

• collect examples of competitive and non-competitive combinations
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Supervised 
Learning

Use your favorite classifier

perfect predictor 

heuristic-based baseline
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Supervised 
Learning

Tree ensembles (Random Forest) achieve good performs

5%

45%

In practice
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Lean 
Prototyping

� simple model trained in a Jupyter Notebook 

� very hacky setup in production on a tiny share of traffic 

� proved the value of ML optimization 



Model 
Staleness

Performance of the model stales, hence needs to be updated regularly

everyday re-training

one-off training



Production 
Pipeline

Data Querying
AWS Athena

Data Archive
AWS S3

Data Collection Current Model

Model Training
scikit-learn

Training Data
7 recent days

Validation Data
5% of the last day Model Validation

Passed?

Skyscanner 
Traffic

Pre-processing

Experiments with 
Challenger Model

5 %

5 %

90%

Training Component (AWS CF + AWS Data Pipeline) 

Report Failure

Update  Model Apache  Kafka

Serving Component

• re-train the model everyday against model drift
• run on a single large machine vs. distributed cluster
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Experiments with 
Challenger Model

5 %

5 %

90%

Training Component (AWS CF + AWS Data Pipeline) 

Report Failure

Update  Model Apache  Kafka

Serving Component

• sample all possible combinations on 5% of users’ traffic



Production 
Pipeline

Data Querying
AWS Athena

Data Archive
AWS S3

Data Collection Current Model

Model Training
scikit-learn

Training Data
7 recent days

Validation Data
5% of the last day Model Validation

Passed?

Skyscanner 
Traffic

Pre-processing

Experiments with 
Challenger Model

5 %

5 %

90%

Training Component (AWS CF + AWS Data Pipeline) 

Report Failure

Update  Model Apache  Kafka

Serving Component

• update the model if it passes the tests and serve it to 90% of the users
• leave 5% for A/B experiments with better models



Temporal 
Stability

(Origin, Destination, Provider) rules

We need a mechanism to control temporal stability of the model
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Online 
Experiments

+ Test in the real world

+ Benchmark in equal conditions

- Some things are difficult to A/B test

- Online experiments might be expensive



Travelers First 

�45% of all competitive combinations for only 5% of the cost 

�22% of search results with cheaper itineraries

�20% rel. increase in bookings on combination itineraries  

�0.74% rel. increase in user retention
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Feature 
Engineering

Can we improve performance with smart feature engineering?

London Gatwick [1 0 0 … 0 ]

London Stansted [0 1 0 … 0] 

One-hot encoding Better encoding

London Gatwick

London Stansted

[1.0 0.9 0.9 ...]

[1.0 0.9 0.1 …] 

Barcelona [0 0 1 … 0] Barcelona [0.0 1.0 0.5 …] 
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Location 
Embeddings Perozzi et al., KDD, 2014.

[London, Barcelona, Frankfurt am Main, New York,  ….]

word

sentence

• Option N1: Every user’s history is a sentence (think of Word2Vec)  
• Option N2: Learn embeddings on graphs of locations 

competitive
or not  

origin

destination

…

…

• Option N3: Train embeddings for target 
problem



Location 
Embeddings

• Capture geographical proximity (Europe vs. Asia) 

• Learn function of the airport (Heathrow and Gatwick vs. Stansted)

• Produce a slight improvement in prediction performance 



Learnings

� focus on right problems which cannot be solved without ML or where 
ML gives 10x improvement 

� define the metrics and optimization objective at the start of the project 
and stick to them thereafter

� bootstrapping ML projects requires 20% of modeling and 80% of 
engineering – in the long run should be vice versa

� lean online experiments are important on early stages to make sure 
users engage with the product 

� ML behavior in production reveals interesting problems which are not 
visible during offline modeling (e.g., temporal stability) 



Join our Team! 
Dima.Karamshuk@skyscanner.net

on Twitter: @karamshuk@SkyscannerEng


