Competitive Machine Learning

Kaggle TGS Salt Identification Challenge

Yauhen Babakhin

14 October, 2018

Data Scientist @ Profitero, Minsk, Belarus

Profitero

Competitions Master				
Current R 522 of 91,04	ank Hi 1	Highest Rank 245		
2	2	6		
IEEE's Signal Processing S 9 th				
Two Sigma Connect: Renta 12 th				
Homesite Q @ · 3 years ag	on 36 th of 1764			

1

Part I

Competitive Machine Learning Overview: Process, Types, Benefits/Drawbacks

Part II

Kaggle TGS Salt Identification Challenge

Competitions Platforms

- Classic ML (table data, time series)
- Deep Learning (text, images)

• Submitting Predictions File

- Submitting Predictions File
- Kernels Competitions

- Submitting Predictions File
- Kernels Competitions
- Docker Competitions

- 1. Playground competitions
- 2. Work with real data
- 3. Build initial EDA
- 4. Build simple models

- 1. Community
- 2. Get some practical tips&tricks
- 3. Portfolio projects
- 4. Interview preparation

- 1. New domain/problem type
- 2. Ideas to apply at the current job
- 3. Portfolio projects
- 4. Team work

- 1. New domain/problem type
- 2. Keep up-to-date with the best performing methods
- 3. Winning prizes
- 4. Posts and papers

Competitions Drawbacks

- 1. Not production solutions*
- 2. Low-quality code
- 3. Time consuming

http:

//blog.kaggle.com/2015/12/03/dato-winners-interview-1st-place-mad-professors/

Kaggle TGS Salt Identification Challenge

My Background

#	#	riangle 1w	Team Name	Kernel	Team Members	Score 🔞	Entries	Last
:	1	▲ 2	Ding Han Renan Kent Al Lab		🧐 🛄 🐴 +4	0.879	384	28m
:	2	▲ 5	Giba&Heng		#	0.878	185	6h
;	3	₹2	earhian			0.875	183	9h
	4	▼ 2	SeuTao			0.875	254	9h
ţ	5	▲ 3	DISK			0.874	273	6h
(6	▼ 2	Tim & Alex & Anton		S 🛐 🔝	0.872	202	2h
;	7	▼ 2	bestfitting			0.870	138	17m
8	8	* 2	ZZZ		7	0.870	108	2d
	9	▲ 5	b.e.s.		25	0.870	111	12h
Your Best Entry 🛧								
Your submission scored 0.870, which is an improvement of your previous score of 0.867. Great job! Y Tweet this!								
10	0	_	[ods.ai] topcoders			0.868	204	3h

- Problem Statement
- EDA and Basic Solution Kernels
- Google for Unknown Seed Words
- Look at Top Solutions of Similar Past Competitions

Problem Statement

$$IoU(A,B) = rac{A \cap B}{A \cup B}$$

EDA and Basic Solution in Kernels

- semantic segmentation
- iou
- unet
- augmentation
- tta
- ...

Look at Top Solutions of Similar Past Competitions

Segmentation						
	Competition	Deadline •	Туре	Evaluation	Reward	Solutions
Data Science Fasic function beyond Decision (March 14) Register	2018 Data Science Bowl Find the nuclei in divergent images to advance medical discovery	2018-04-17	Computer vision, Image segmentation	IntersectionOverUnionObjectSegmentation	\$100000	Forum 2nd place solution 3rd place solution
Ē	Carvana Image Masking Challenge Automatically identify the boundaries of the car in an image	2017-09-28	Semantic segmentation, Image processing / Vision	Dice coefficient	\$25000	Forum 1st place solution 3rd place solution

http://ndres.me/kaggle-past-solutions/

- Establish Validation
- Copy/Create Simple Baseline. Fix Bugs
- Read/Invent New Features. Try them
- ...
- Read/Invent New Features. Try them
- Ensemble the Results

U-Net Architecture

U-Net with Pre-Trained Encoders

https://arxiv.org/abs/1801.05746

Different Types of Decoders (FPN)

http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf

Different Types of Decoders (PSP)

https://arxiv.org/pdf/1612.01105.pdf

Different Types of Decoders (LinkNet)

https://arxiv.org/pdf/1707.03718.pdf

Keras Segmentation Models Zoo

Avaliable models:

- Unet
- FPN
- Linknet
- PSPNet

Avaliable backbones:

Backbone model	Name	Weights
VGG16	vgg16	imagenet
VGG19	vgg19	imagenet
ResNet18	resnet18	imagenet
ResNet34	resnet34	imagenet
ResNet50	resnet50	<pre>imagenet imagenet11k-places365ch</pre>
ResNet101	resnet101	imagenet

https://github.com/qubvel/segmentation_models

Concurrent Spatial and Channel 'Squeeze & Excitation'

https://arxiv.org/pdf/1803.02579.pdf

Cosine Annealing

https://arxiv.org/pdf/1608.03983.pdf

Snapshot Ensembles

https://arxiv.org/pdf/1704.00109.pdf

Bonus: Mosaic

https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/66940

Thank you!

Questions?

In linkedin.com/in/yauhenbabakhin
 y.babakhin@gmail.com
 Ods.ai: @b.e.s.