ORACLE | maxymiser

Statistical Approaches in Online Testing

Dmytro Skorokhodov

Al Ukraine 17 Kharkiv Sep 23-24, 2017

Oracle Maxymiser

ORACLE I **maxymiser** is leading provider of cloud-based software that enables marketers to test, target and personalize what a customer sees on a Web page or mobile app, substantially increasing engagement and revenue

2006 – Foundation
 2015 – Acquisition by Oracle

Agenda

1. Introduction to testing

- Testing: When? Where?
- Testing: Collect evidence
- Testing: Compare performance
- Statistical testing

2. Statistical approaches in testing

- Frequentist approach
- Bayesian approach

3. Challenges in online testing

- How long to run a test?
- Continuous monitoring
- Delayed responses
- 2+ alternatives
- Throttling
- Multiple goals
- Other challenges

Introduction to testing

ORACLE'

Testing: Collect evidence

Define test KPI's

Target audience

• Visitors, sessions, views, ...

Target metric

• Clicks, Purchases, Sign-Ups, ...

Success measure

• Conversion rate, average revenue, ...

Collect evidence

• ...

Testing: Compare performance

Evidence

Variant	Visitors	Clicks*	Conv rate
Default	98	31	31.63%
Alternative	103	34	33.01%

Does evidence tell that Alternative is better than Default?

Sample estimates

• ≠ true conversion rates

Given:

Default true conv rate = **30% Alternative** true conv rate = **29%**

There is

43.74% chances that Alternative will have higher sample conversion rate

*Assumption: 0 or 1 click per visitor

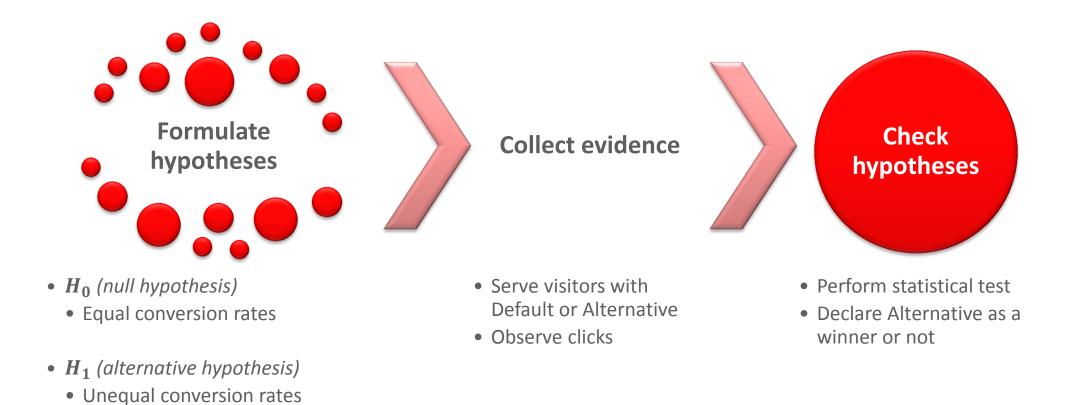
Statistical error

- Sampling error
- Random nature of visitor response
- Imperfect knowledge of future
- Wrong model of experiment

Use statistical test!

ORACLE"

Statistical testing



No 100% guarantee that the winner is found

ORACLE'

Statistical approaches in testing

Statistical approaches

	Frequentist inference	Bayesian inference	
Parameters	Fixed (may be unknown)	Random, may be presented as beliefs	
Assumptions	H_0 is true by default	$m{H_0}$ and $m{H_1}$ have some prior probabilities	
Thresholds	Significance level α		
Evidence (<i>E</i>)	Used to disprove H_0 :	Used to update beliefs in H_0 and H_1 :	
Result	p -value – probability of results to be at least as extreme as evidence given H_0	Calculate posterior probabilities of $m{H_0}$ and $m{H_1}$	
Result	Reject H_0 if p -value $< lpha$, and accept H_0 otherwise	Reject H_0 if $P(H_0 \mid E) < \alpha$, and accept H_0 otherwise	

Frequentist approach

Null hypothesis H_0

• $p_D = p_A, p_D > p_A, ...$

Alternative hypothesis H_1

• $p_D \neq p_A, p_D < p_A, ...$

Significance level α

• **0**. **05**, 0.01, 0.1, ...

Statistical test

ORACLE

- **T-test**, χ^2 -test, U-test, ...
- applicable to wide family of distributions
- motivated by the law of large numbers

Notations:

- *n* number of visitors
- *c* number of clicks
- p true conversion rate
- \widehat{p} sample conversion rate

T-test details (Two tailed two samples Welch T-test)StepFormulaCalculate sample
estimates $\widehat{p}_D = \frac{c_D}{n_D}$ and $\widehat{p}_A = \frac{c_A}{n_A}$ Calculate T-statistics $t = \frac{|\widehat{p}_D - \widehat{p}_A|}{\sqrt{\frac{\widehat{p}_D \cdot (1 - \widehat{p}_D)}{n_D} + \frac{\widehat{p}_A \cdot (1 - \widehat{p}_A)}{n_A}}}$ Calculate P-valuep-value = $2 \int_t^{+\infty} \varphi(t) dt$,
 φ is standard normal p.d.f.

Frequentist approach: Example

Variant	Visitors	Clicks	Conv rate	T-statistics	P-value
Default	98	31	31.63%	0.209	0.83
Alternative	103	34	33.01%		

Accept *H*₀ at 0.05 significance level:

• Not enough data to prove that Alternative is different from Default

Variant	Visitors	Clicks	Conv rate	T-statistics	P-value
Default	98	15	15.31%	3.005	0.027
Alternative	103	34	33.01%		

Reject H_0 at 0.05 significance level:

• Alternative is different from Default with 5% significance

ORACLE'

Bayesian approach: one simple coin example

Null hypothesis H_0

• $p = q_1$ with $\pi_0 = P(H_0) = 0.5$ prior probability

Alternative hypothesis H_1

• $p \neq q_2$ with $\pi_1 = P(H_1) = 0.5$ prior probability

Significance level α

• **0.05**, 0.01, 0.1, ...

Update rule ingredients

- Coin model: **p** is the success rate
- Bayes theorem: $P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$
- Law of total probability: $P(B) = \sum_{j} P(B \mid A_{j}) \cdot P(A_{j})$

Opuale rule details given <i>u</i> neads and <i>D</i> tails			
Step	Formula		
Posterior probability for H_i	$P(H_i \mid E) = \frac{P(E \mid H_i)}{P(E)} \cdot \pi_i$		
Probability of evidence given <i>H_i</i>	$P(E \mid H_i) = q_i^a (1 - q_i)^b$		
Probability of evidence	$P(E) = \sum_{i=0}^{1} P(E \mid H_i) \cdot \pi_i$		

Undate rule details given *a* heads and *b* tails

EXAMPLE			
Assumption: $q_1 = 0.5, q_2 = 0.3$ Evidence: 4 heads, 5 tails	$P(E \mid H_0) = 0.5^4 \cdot 0.5^5 \approx 0.002$ $P(E \mid H_1) = 0.3^4 \cdot 0.7^5 \approx 0.0014$ $P(E) \approx 0.0033$ $P(H_0 \mid E) \approx 58.93\%$		
NOTE: If $\pi_0 = 0.9$ and $\pi_1 = 0.1$ then $P(H_0 \mid E) \approx 92.81\%$			

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

ORACLE

Bayesian approach: two coins example

Null hypothesis H_0

• $p_D = p_A$ with π_0 prior and $\pi_0(p_D, p_A)$ prior p.d.f. of parameters

Alternative hypothesis H_1

• $p_D \neq p_A$ with π_1 prior and $\pi_1(p_D, p_A)$ prior p.d.f. of parameters

Significance level α

• 0.05

Update rule ingredients

- Coin model: p_D and p_A are the success rates
- Bayes theorem
- Law of total probability
- Bayes theorem for p.d.f's:

$$P(A \mid B) = \frac{P(A)}{P(B)} \int_{\Omega} p(\omega \mid A) d\omega$$

Update rule details given a_j heads and b_j tails for j^{th} coin

Step	Formula	
Posterior probability for <i>H_i</i>	$P(H_i \mid E) = \frac{P(E \mid H_i)}{P(E)} \cdot \pi_i$	
Posterior p.d.f. of parameters in H_i	$\pi_i(p,q E) = p^{a_0}(1-p)^{b_0}q^{a_1}(1-q)^{b_1}\pi_i(p,q)$)
Probability of evidence given H _i	$P(E \mid H_i) = \int_0^1 \int_0^1 1 \cdot \pi_i(p, q \mid E) dp dq$	
Probability of evidence	$P(E) = \sum_{i=0}^{1} P(E \mid H_i) \cdot \pi_i$	
	L(p,q)	
	$L(p,q) = 1 L(p,q) = \max\{q - p; 0\} L(p,q) = q - p $	

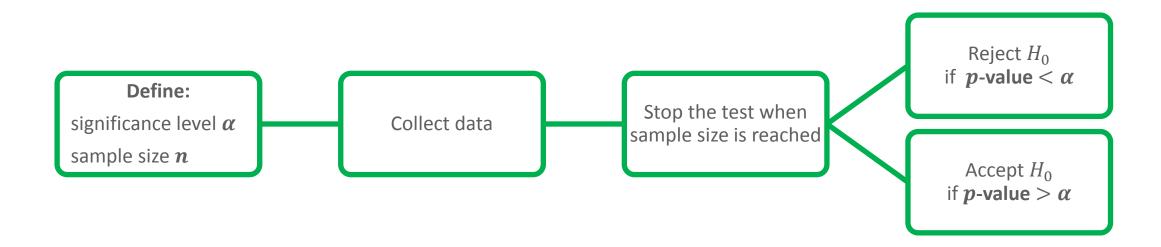
ORACLE'

Non-comprehensive comparison

Frequentist inference	Bayesian inference
 Simple "universal" indicator Directly verifiable (AA/AB tests) 	 Flexible Loss function Optional stopping out of box
	"Subjective"
• No rejection for H_1	Difficult to interpretation for a non Statistician
 <i>p</i>-value is prone to misinterpretations 	 No standard choice for priors, hypotheses, data models
	 Revenue testing is much more advanced

Challenges in Online Testing

Fixed sample methodology to online testing



	<i>H</i> ₀ is rejected	H_0 is accepted
H ₀ is true	Type I error	Correct inference
H_1 is true	Correct inference	Type II error

Type I error is bounded by α

• Ensured by methodology

Type II error has no sense with H_0 and H_1

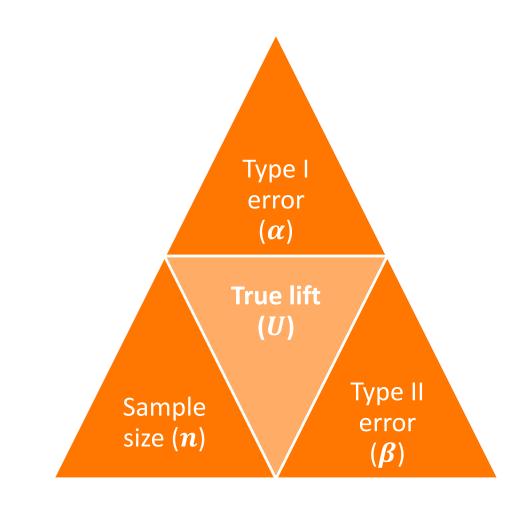
• No distance between hypotheses

Consider different alternative: $H_U : |p_D - p_A| > U$

ullet Can assign eta threshold for not rejecting H_0

ORACLE'

Challenge 1: How long to run a test?



$$n = \frac{\left(\Phi(\beta) + \Phi\left(1 - \frac{\alpha}{2}\right)\right)^2}{U^2 \cdot p}$$

Type I error is bounded by lpha

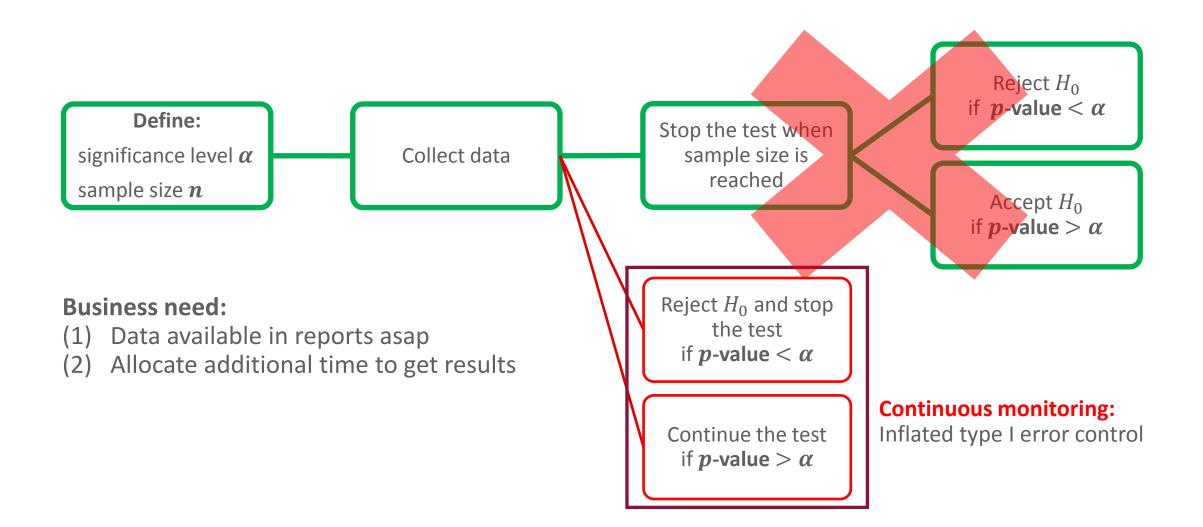
• Ensured by methodology

Type II error is bounded by β for H_U

• Ensured by formula

U is pure guess

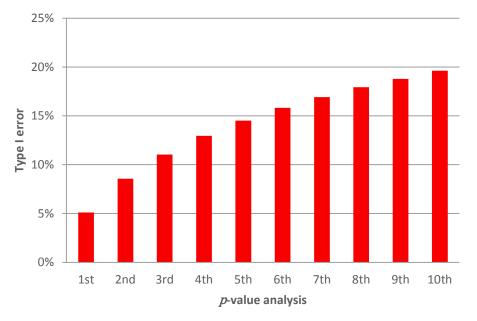
Challenge 2: Continuous monitoring



ORACLE

Challenge 2: Continuous monitoring inflates type I error

Type I error inflation under continuous monitoring



 H_0 will be rejected eventually with continuous monitoring!

Law of iterated logarithm

$$\overline{\lim_{k\to\infty}}\frac{T_k}{\sqrt{\log\log k}}=\sqrt{2}, \text{ a.s.}$$

Design a methodology that accounts for continuous monitoring

Do sequential testing!

Appeared in 1920's

• A. Wald, J. Wolfowitz, W. Allen Wallis, M. Friedman, H. Robbins, ...

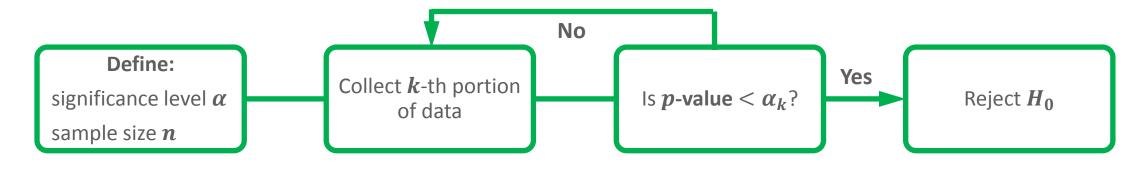
Key idea

- Control type I error by:
 - Using smaller significance levels α_k at interim analyses: $\sum_k \alpha_k < \alpha$
- Achieve high power by:

ORACLE

Using covariates, *i.e.* similarity between *p*-value's at consecutive analyses

1.9 1.4 0.9 0.4 -0.1 -0.6 -0.7



T-statistics behavior

Challenge 3: Delayed responses & sequential tests

Delayed responses examples

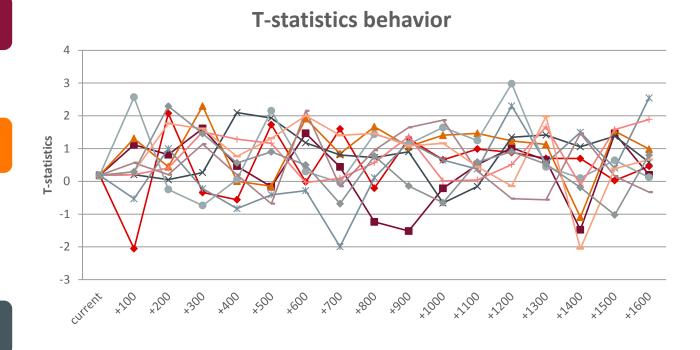
• Purchases, multiple conversions, ...

Delayed responses effects

- Previous conclusions may change
- Inflated type I error in sequential tests due to covariance accounting

Unknowns with delayed responses

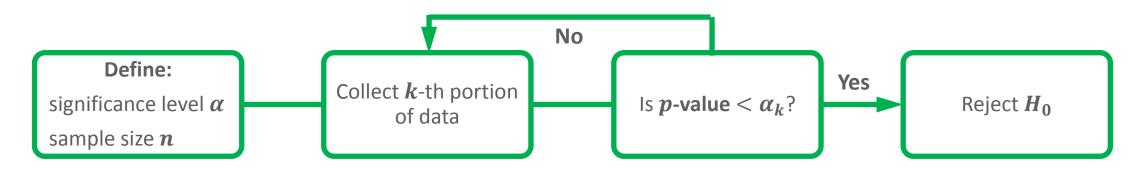
- Percentage of delayed actions
- Distribution of delay



Ignore covariates!

ORACLE

Our approach



Strict control over type I error

• α percent of false positive results

Zero type II error

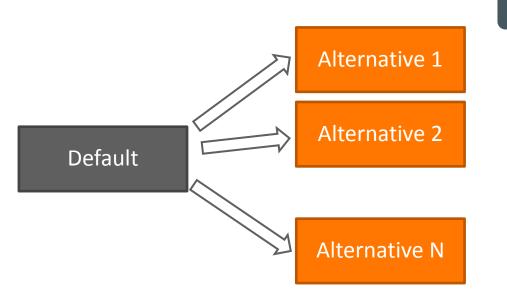
• Every test with non-zero difference will be concluded eventually

'Flat' test notification

• Receive message if difference is low enough (lower than user-input threshold)

Standard/low traffic modifications

Challenge 4: 2+ alternatives (ABn and MVT tests)



Which is better than Default?

• Formulate multiple (*N*) null hypothesis:

$$H_{0,1}: p_D = p_{A_1}, \ H_{0,2}: p_D = p_{A_2}, \ \dots, \ H_{0,N}: p_D = p_{A_N}$$

• Protect against type I error inflation:

Family-wise error – probability of rejecting 1+ true null hypothesis

Bonferroni – multiply individual *p*-values by *N Holm-Bonferroni*

False discovery rate – expected proportion of incorrectly rejected null hypotheses among all rejected null hypotheses

Benjamini-Hochberg

ORACLE

Challenge 4: 2+ alternatives (ABn and MVT tests)

More data is needed to reach statistical significance

- Exclude bad performing variants (ABn & MVT)
- Neglect some degree of factors interaction (MVT)
 - Orthogonal arrays
 - Taguchi
 - Fractional factorial designs
 - Optimal designs

Challenge 5: Throttling mid-test

Business need:

Validate Alternative on small portion of traffic and increase this proportion later if it proves competitive against the Default

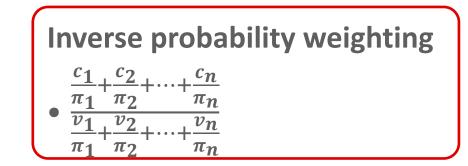
Example						
		Default			Alternative	
	Visitors	Converters	Conv Rate	Visitors	Converters	Conv Rate
1 st week	9000	900	10.0%	1000	105	10.5%
2 nd week	5000	450	9.0%	5000	455	9.1%
Total	14000	1350	9.6%	6000	560	9.3%

Problem (known as **Simpson's paradox):** Standard (cumulative) estimates are skewed!

ORACLE

Challenge 5: Throttling mid-test

 $\frac{c_1+c_2+\cdots+c_n}{v_1+v_2+\cdots+v_n}$



- v_i is the number of visitors on period j
- c_i is the number of converters on period j
- π_i is the probability of serving a variant on period j

Example		
Variant	Cumulative Conv Rate	Inverse probability weighting Conv Rate
Default	9.6%	$\left(\frac{900}{90\%} + \frac{450}{50\%}\right) \div \left(\frac{9000}{90\%} + \frac{5000}{50\%}\right) = 9.5\%$
Alternative	9.3%	$\left(\frac{105}{10\%} + \frac{455}{50\%}\right) \div \left(\frac{1000}{10\%} + \frac{5000}{50\%}\right) = 9.8\%$

Challenge 6: Testing in Multiple metrics

Business need:

Alternative should reasonably improve several KPIs

Consider multiple pairs of hypotheses: $H_0^j: p_0(M_j) > p_1(M_j) \text{ vs } H_1^j: p_0(M_j) < p_1(M_j)$

AND – Alternative should outperform Default in **ALL** KPI's

- Difficult to achieve
- No corrections are needed for *p*-values assuming winner

OR – Alternative should outperform Default in **AT LEASE ONE** of KPI's

- Simple to achieve
- Bonferroni-type correction is needed

Gatekeeper procedures

• Example goal:

(Alternative > Default in M1) **OR** (Alternative < Default in M1 at most 1% **AND** Alternative > Default in M2)

Corrections depend on the procedure

ORACLE[.]

Other challenges

Outlier filtering

- Marketing campaigns
- Extreme purchases
- Bots, crawlers, ...

Trends detection

- Seasonality
- Long-term effects
- Novelty effect
- Data window

Factors interaction

- Speed up conclusion in MVT
- Reveal usable knowledge

Segments analysis

- Visitors heterogeneity
 "Actionable"
- "Actionable" insights

ORACLE'

Thank you!

