I'm a huge metal fan!

Mariana Romanyshyn Computational Linguist at Grammarly, Inc.

1.

The Matter of Meaning

Words have meanings

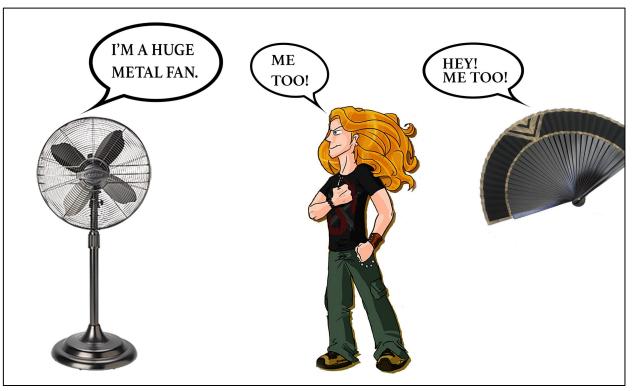


Image by Tetiana Turchyn

Homonymy vs. Polysemy

Homonymous "bank"

- a financial institution
- an area of land along the side of a river

Polysemous "man"

- the humanity
- male part of the humanity
- adult male part of the humanity

Homonymy vs. Polysemy

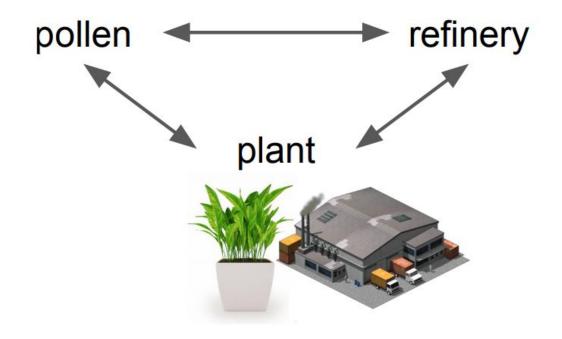
Homonymous "bank"

- a financial institution
- an area of land along the side of a river

Polysemous "man"

- the humanity
- male part of the humanity
- adult male part of the humanity

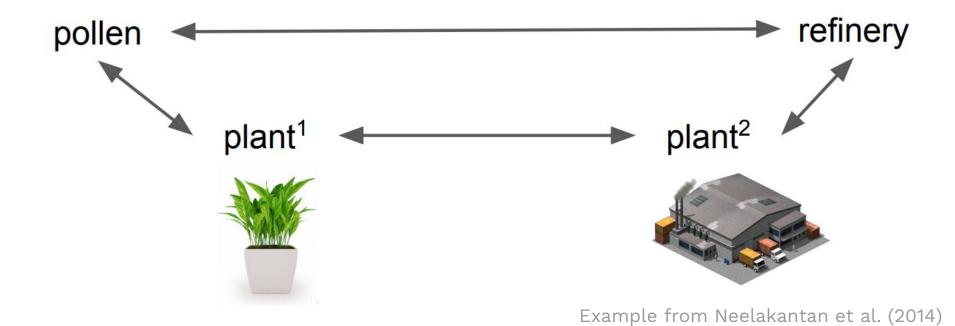
a person



Is it serious?

- ~40% of English words are polysemous
- most polysemous verbs (~55% in WordNet)
- resources disagree
 - *"head"*, noun:
 - 11 meanings Macmillan Dictionary
 - 16 meanings Longman Dictionary
 - 33 meanings WordNet
 - 34 meanings Oxford Dictionary
- meanings overlap
 - John works for the **newspaper** that you are reading.

What does it mean for NLP?


Triangle inequality in word embeddings.

Example from Neelakantan et al. (2014)

What does it mean for NLP?

Word embeddings => sense embeddings

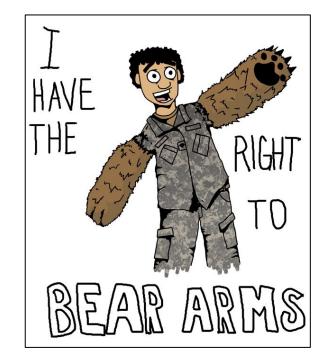
Is it just English?

... зробити так, щоби впала стіна?

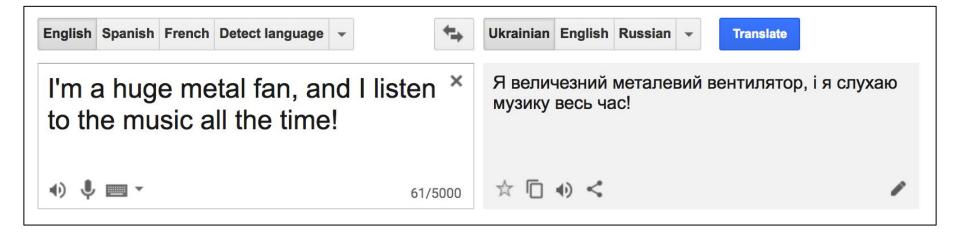
- стіна будинку
- стіни айсбергів
- мур
- те, що відокремлює, роз'єднує

Can't deep learning just figure it out?

Text classification/mining


US **sells arms** to countries well-known for violating human rights.

Using recycled prosthesis, a hospital in Tanzania **sells arms** for around \$500 each. There is also high demand for legs.


Text classification/mining

US **sells arms** to countries well-known for <u>violating human rights</u>.

Using recycled <u>prosthesis</u>, a <u>hospital</u> in Tanzania **sells arms** for around \$500 each. There is also high demand for <u>legs</u>.

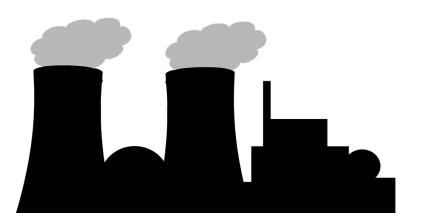
Machine translation

Example from Google Translate

Machine translation

English Ukrainian Spanish Detect	language 👻	+	Ukrainian	English	Russian	•	Translate	
I'm a huge metal fai to the music all the	Я огромный металлический поклонник, и я слушаю музыку все время!							
•) U = -		61/5000	☆ □	• <				1

Example from Google Translate


Personal assistants

You: I need to buy a big **plant** for my mom. She likes gardening!

Siri: Hmm...

Personal assistants

Ethan Lee Retweeted

Matt Krause @RepMattKrause · 1h Bezos: "Alexa, buy me something from Whole Foods."

Alexa: "Buying Whole Foods."

Bezos: "Wait, what?"

२८ २२४ ♥ 1,176 ₪

Sentiment analysis

Interest rates are very high.

These <u>socks</u> are a little **high**.

This <u>area</u> is **rich** in <u>natural resources</u>.

These <u>comments</u> are a bit **rich** coming from someone with no money worries.

Sentiment analysis

Interest rates are very high.

These <u>socks</u> are a little **high**. (= smelly)

This <u>area</u> is **rich** in <u>natural resources</u>.

These <u>comments</u> are a bit **rich** coming from someone with no money worries.

Sentiment analysis

Interest rates are very high.

These <u>socks</u> are a little **high**. (= smelly)

This <u>area</u> is **rich** in <u>natural resources</u>.

These <u>comments</u> are a bit **rich** coming from someone with no money worries.

Abstract or concrete?

Man is rapidly destroying the earth.

Do you recognize **man** in the grey suit?

Abstract or concrete?

Man is rapidly destroying the earth.

Do you recognize **the man** in the grey suit?

Countable or uncountable?

This is a minor but moving **work** of literature.

Employees may take a **work** home if they wish.

Countable or uncountable?

This is a minor but moving **work** of literature.

Employees may take *x* **work** home if they wish.

Standard vs. non-standard

I believe women should be paid the same as **men**.

All **men** are equal in the sight of the law.

Standard vs. non-standard

I believe women should be paid the same as **men**.

All **{men=>people}** are equal in the sight of the law.

They're called "man-hours" because a woman would finish that shit in 20 minutes.

Animate or inanimate?

The software learns **models** from large quantities of data.

How to learn a **model** to flip her hair.

The **chair** was placed in the museum. He's part of the exhibit now.

The **chair** was awarded for a poem. He's famous now.

Animate or inanimate?

The software learns **models** from large quantities of data.

How to **{learn=>teach}** a **model** to flip her hair.

The **chair** was placed in the museum. He's part of the exhibit now.

The **chair** was awarded for a poem. He's famous now.

Animate or inanimate?

The software learns **models** from large quantities of data.

How to **{learn=>teach}** a **model** to flip her hair.

The **chair** was placed in the museum. **{He=>It}**'s part of the exhibit now.

The **chair** was awarded for a poem. He's famous now.

What is "sense" than?

- senses = domains?
- senses = sentiments?
- senses = animate/inanimate?
- senses = jargon/standard?
- senses = countable/uncountable?
- senses = senses?

Resources

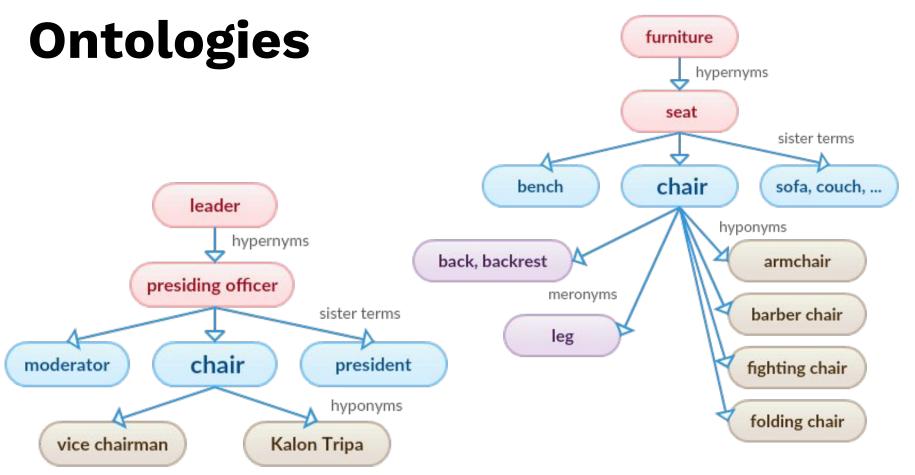
Dictionaries

bank (plural banks)

- 1. (hydrology) An edge of river, lake, or other watercourse. [quotations ▼]
- 2. (*nautical*, *hydrology*) An elevation, or rising ground, under the sea; a shallow area of shifting sand, gravel, mud, and so forth (for example, a sandbank or mudbank).

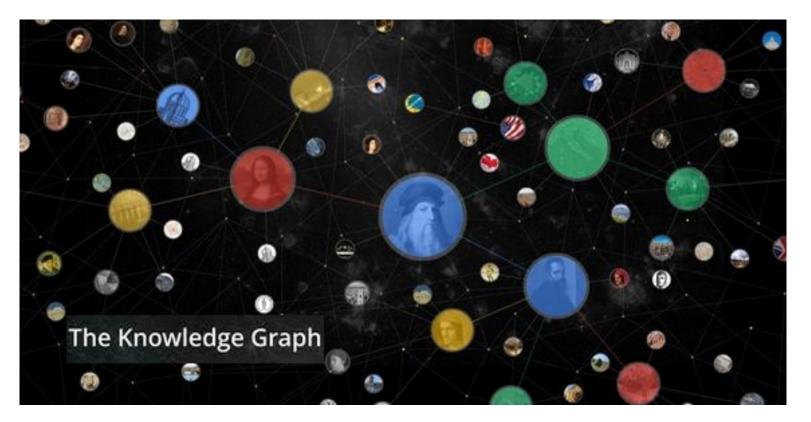
the banks of Newfoundland

- 3. (geography) A slope of earth, sand, etc.; an embankment.
- 4. (aviation) The incline of an aircraft, especially during a turn.
- 5. (rail transport) An incline, a hill.


Example from en.wiktionary.org

Dictionaries

man¹ /mæn/ ••• S1 W1 noun (plural men /men/) 4


- **1 MALE PERSON** [countable] an adult male human \rightarrow woman
- **2 STRONG/BRAVE** [countable usually singular] a man who has the qualities that people think a man should have, such as being brave, strong etc
- **3 PERSON** [countable] a person, either male or female used especially in formal situations or in the past
- 4 **PEOPLE** [uncountable] people as a group

Example from www.ldoceonline.com

Example of relations in WordNet

Knowledge Graph

Wikipedia, Wikidata, DBpedia

Finance [edit]

- Central bank
- Mutual savings bank
- Savings bank

Natural geography [edit]

- Bank (geography), a raised portion of seabed or sloping ground along the edge of a stream, river, or lake
- Ocean bank (topography)
- Ocean bank, a shallow area in a body of water
- Stream bank or riverbank, a terrain alongside the bed of a river, creek, or stream

BabelNet

Noun

fan, mechanical fan, ventilator

A device for creating a current of air by movement of a surface or surfaces

ID: 00033599n | Concept

fan, rooter, sports fan

An enthusiastic devotee of sports

ID: 00033600n | Concept

UКвентилятор, вентилятор

Example from babelnet.org

Corpora: SemCor

<wf>The</wf>

<wf lemma="model" wnsn="3">model</wf>

- <wf lemma="quite" wnsn="1">quite</wf>
- <wf lemma="plainly" wnsn="1">plainly</wf>
- <wf lemma="think" wnsn="1">thought</wf>
- <wf lemma="person" wnsn="1">Michelangelo</wf>
- <wf lemma="crazy" wnsn="1">crazy</wf>
- <wf>;</wf>

http://web.eecs.umich.edu/~mihalcea/downloads.html

Corpora: Wikipedia

Beverly Johnson (born October 13, 1952) is an **[American]"United** States"] [model]"Model (person)"], [actress]"Actress"], [singer]"Singer"], and [businesswoman]"Businesswoman"].

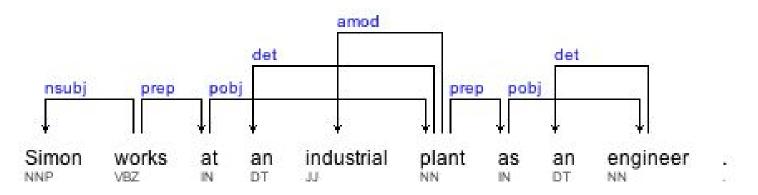
Supervised word-sense disambiguation

If you have a corpus...

Features:

- collocations
- bag of words

Containing:


- word
- lemma
- part of speech
- dependencies

Collocations

Simon works at an industrial **plant.n.1** as an engineer.

Ngrams: [industrial plant, plant as, an industrial plant,...]

Syngrams: [works:prep_at:plant, work:prep:as, plant:amod:industrial,...]

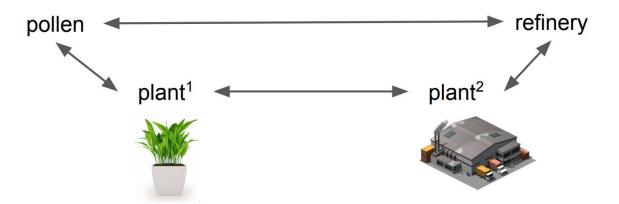
Parse tree by nlp.stanford.edu:8080/parser/

Bag of words

Simon works at an industrial **plant** as an engineer.

plant: [soil, assembly, root, <u>industrial</u>, contraband, agent, <u>work</u>...] [0, 0, 0, 1, 0, 0, 1...]

Idea


- use a predefined set of context words for each word
- useful for homonyms, to detect the general topic

Results

1. Annotate corpora

I need to buy a big **plant.n.1** for my mom. She likes gardening! Simon works at an industrial **plant.n.2** as an engineer.

2. Build sense embeddings

SensEmbed vectors

bank ₁ ⁿ (geographical)	$bank_2^n$ (financial)	<i>number</i> $_4^n$ (phone)	$number_3^n$ (acting)
upstream ^{r} ₁	commercial_bank_1^n	$calls_1^n$	appearing $_6^v$
downstream $_1^r$	financial_institution $_1^n$	dialled $_1^v$	minor_roles ^{n}
$runs_6^v$	national_bank_1^n	operator ⁿ ₂₀	stage_production ^{n}
$\operatorname{confluence}_{1}^{n}$	$trust_company_1^n$	$telephone_network_1^n$	supporting_roles ^{n}
$river_1^n$	savings_bank_1^n	$telephony_1^n$	leading_roles ^{n}
$stream_1^n$	$banking_1^n$	subscriber $_2^n$	stage_shows $_1^n$

Nasari vectors

Bank (financial institution	ı)	
English	French	Spanish
bank	banque	banco
banking	bancaire	bancario
deposit	crédit	banca
credit	financier	financiero
money	postal	préstamo
loan	client	entidad
commercial_bank	dépôt	déposito
central_bank	billet	crédito

Bank (geography)			
English	French	Spanish	
river	eau	banco	
stream	castor	limnología	
bank	berge	ecología	
riparian	canal	barrera	
creek	barrage	estuarios	
flow	zone	isla	
water	perchlorate	interés	
watershed	humide	laguna	

Example from Camacho-Collados (2016)

A couple of questions...

- 1. Where do I get annotated data...
- 2. Where do I get these bags of words...

...for each word and each sense that I need in my task?

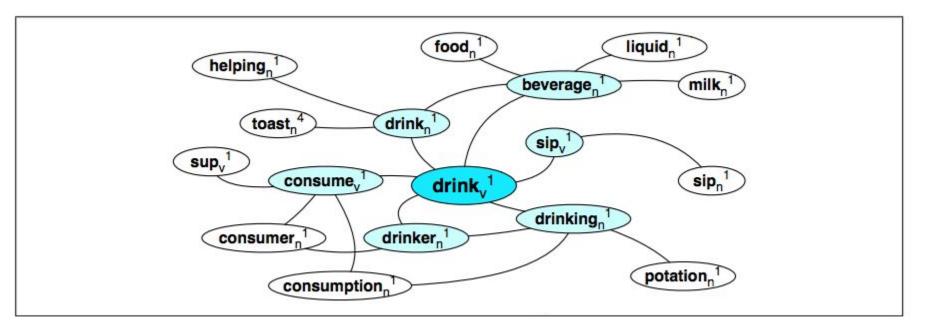
Linguistically-motivated word-sense disambiguation

With which sense **signature** does your **context** overlap the most?

```
function SIMPLIFIED LESK(word, sentence) returns best sense of word
 best-sense \leftarrow most frequent sense for word
 max-overlap \leftarrow 0
 context \leftarrow set of words in sentence
 for each sense in senses of word do
  signature \leftarrow set of words in the gloss and examples of sense
  overlap \leftarrow COMPUTEOVERLAP(signature, context)
  if overlap > max-overlap then
       max-overlap \leftarrow overlap
       best-sense \leftarrow sense
 end
 return(best-sense)
```

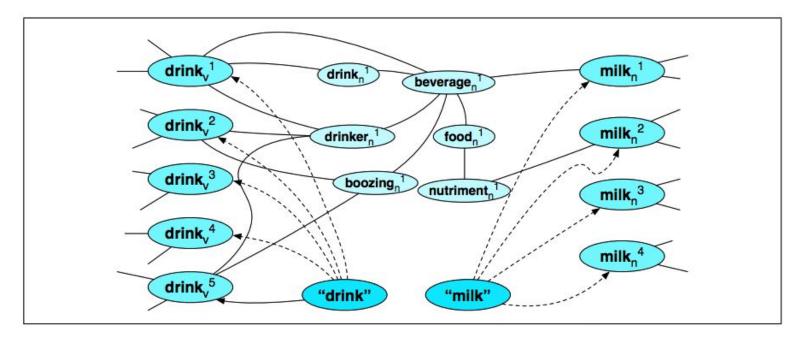
Simon <u>works</u> at an <u>industrial</u> **plant** as an <u>engineer</u>.

- <u>S:</u> (n) plant, <u>works</u>, <u>industrial plant</u> (buildings for carrying on industrial labor) *"they built a large plant to manufacture automobiles"*
- <u>S:</u> (n) plant, <u>flora</u>, <u>plant life</u> ((botany) a living organism lacking the power of locomotion)
- <u>S:</u> (n) plant (an actor situated in the audience whose acting is rehearsed but seems spontaneous to the audience)
- <u>S:</u> (n) plant (something planted secretly for discovery by another) "the police used a plant to trick the thieves"; "he claimed that the evidence against him was a plant"


How to find context words?

- filter functional words
- take lemmas
- for signature of each sense, use
 - examples
 - definitions
 - related terms
 - synonyms, hyponyms, hypernyms, holonyms, meronyms...
 - sentences from corpora, etc.

How to compute overlap?


- number of overlapping words
- weighed by the number of occurrences
- weighed by -log(P(w))
- weighed by IDF score: log(C(doc) / C(d_i))
- weighed by ontological distance

Which sense is the closest to context words?

Example from Navigli and Lapata (2010)

Which sense of the context word to choose?

Example from Navigli and Lapata (2010)

Simon works at an industrial **plant** as an <u>engineer</u>.

```
>>> plant_1 = wn.synset('plant.n.01')
>>> plant_1.definition()
u'buildings for carrying on industrial labor'
>>> plant_2 = wn.synset('plant.n.02')
>>> plant_2.definition()
u'(botany) a living organism lacking the power of locomotion'
```

```
>>> engineer = wn.synset('engineer.n.01')
```

Simon works at an industrial **plant** as an <u>engineer</u>.

```
>>> plant_1 = wn.synset('plant.n.01')
>>> plant_1.definition()
u'buildings for carrying on industrial labor'
```

```
>>> plant_2 = wn.synset('plant.n.02')
>>> plant_2.definition()
u'(botany) a living organism lacking the power of locomotion'
```

```
>>> engineer = wn.synset('engineer.n.01')
>>> plant_1.path_similarity(engineer)
0.1111111111111111
>>> plant_2.path_similarity(engineer)
0.25
```


Input the two lexical items 🛿	
plant#n#1	
Input type: Detect automatically 🗘 🕄	/
engineer#n#1	
Input type: Detect automatically 🗘 🕼	//
Alignment-based disambiguation? • Yes ONo	?
Calculate similarity	
The similarity of the two items is: 0.182	
unrelated (0)	(1) synonymous

Input the two lexical items 🛙	
plant#n#2	
Input type: Detect automatically 🗘 🕄	/
engineer#n#1	
	//
Input type: Detect automatically 🛟 🛿	
Alignment-based disambiguation? • Yes O No 🖬	
Calculate similarity	
The similarity of the two items is: 0.052 🛙	
unrelated (0)	(1) synonymous

Demo: http://lcl.uniroma1.it/adw/

Impact

Pros:

- good for partially annotating corpora
 - can be continued in a semi-supervised fashion
- good for bag-of-words feature set
- unreasonably effective: ~0.7% prec and ~0.7% recall

Cons:

- some senses are poorly covered
- mapping e.g. WordNet and Wikipedia is a tricky task

Important linguistic hypothesis

One sense per discourse!

I bought a **plant** yesterday and put it in my small tank with some inch long baby cichlids.Lost 3 fish over night i never lose fish. i dont see any nibbles on the **plant** though.. any advice?

5

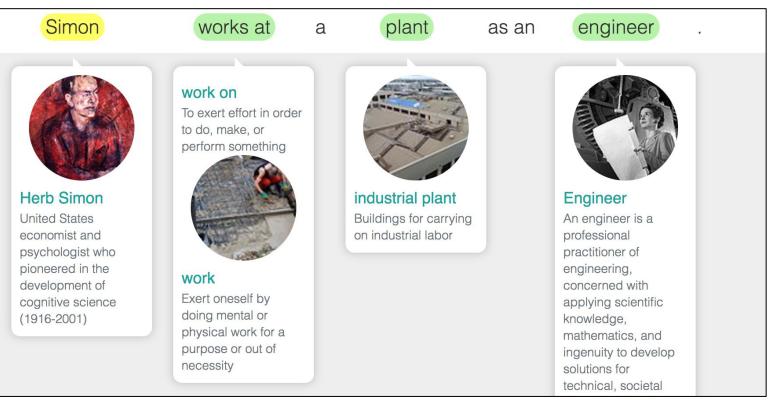
Unsupervised word-sense disambiguation

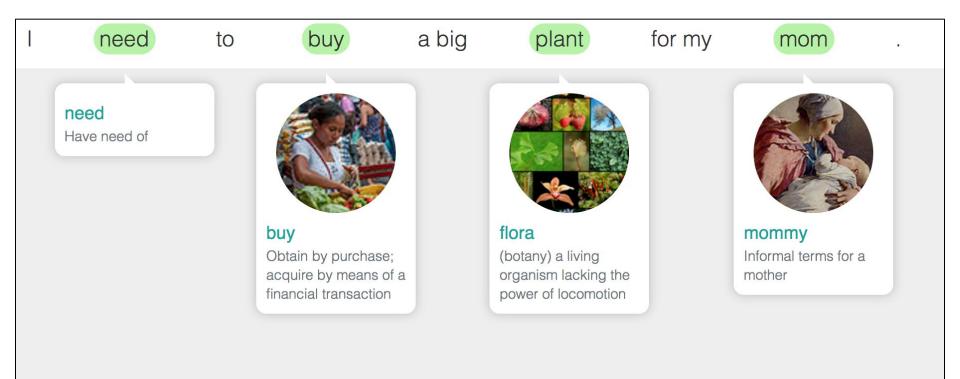
Word sense induction

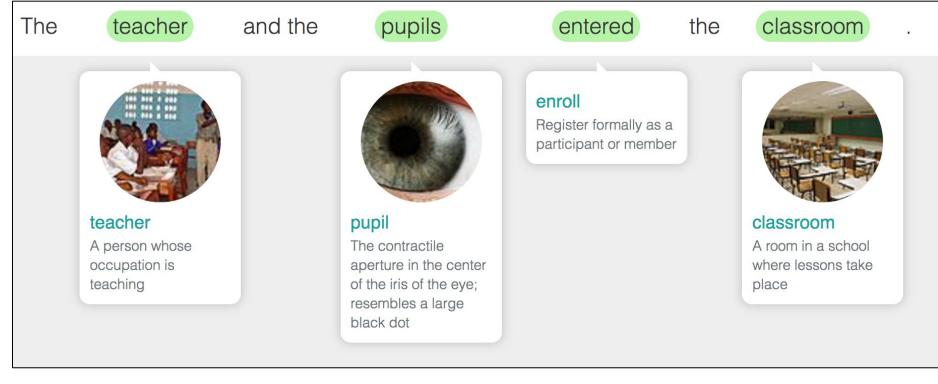
Idea:

- for each word occurrence, compute a context vector
- cluster these context vectors
- compute the sense vector in each cluster
- map sense vectors to senses

The number of clusters should be predefined. Or not.

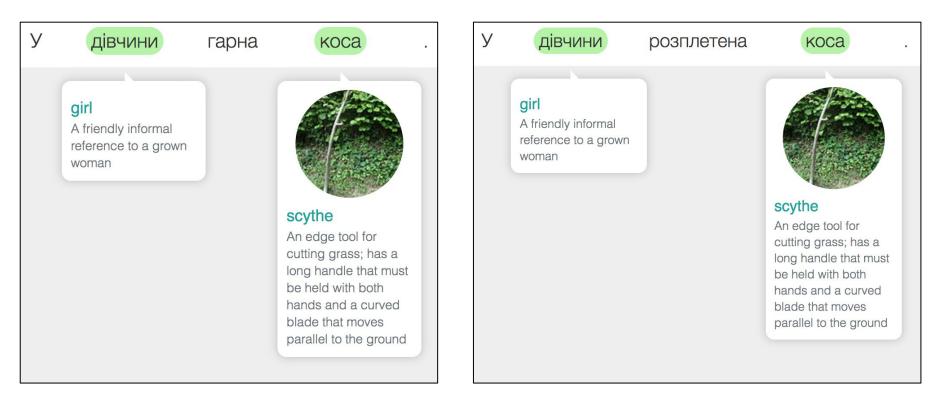



To conclude


Quality

Measure	Dataset					
The second s	RG-65	WS-Sim	WS-Rel	YP-130	MEN	Average
Pilehvar et al. (2013)	0.868	0.677	0.457	0.710	0.690	0.677
Zesch et al. (2008)	0.820			0.710		
Collobert and Weston (2008)	0.480	0.610	0.380	_	0.570	
Word2vec (Baroni et al., 2014)	0.840	0.800	0.700	_	0.800	
GloVe	0.769	0.666	0.559	0.577	0.763	0.737
ESA	0.749	_				
PMI-SVD	0.738	0.659	0.523	0.337	0.726	0.695
Word2vec	0.732	0.707	0.476	0.343	0.665	0.644
SensEmbed _{closest}	0.894	0.756	0.645	0.734	0.779	0.769
SENSEMBED _{weighted}	0.871	0.812	0.703	0.639	0.805	0.794

Table 3: Spearman correlation performance on five word similarity and relatedness datasets.



У	дівчини	гарна	коса	·
	girl A friendly informal reference to a grown woman		ScytheAn edge tool for cutting grass; has a long handle that must be held with both hands and a curved blade that moves parallel to the ground	

Example from babelfy.org

Thank.v.01 you!

Any questions.n.01?

References

- Neelakantan et al. (2014), <u>Efficient Non-parametric Estimation of</u> <u>Multiple Embeddings per Word in Vector Space</u>
- Iacobacci et al. (2015), SENSEMBED: <u>Learning Sense Embeddings for</u> <u>Word and Relational Similarity</u>
- Camacho-Collados et al. (2016), <u>Nasari: Integrating explicit</u> <u>knowledge and corpus statistics for a multilingual representation of</u> <u>concepts and entities</u>
- Navigli and Lapata (2010), <u>An Experimental Study of Graph</u> <u>Connectivity for Unsupervised Word Sense Disambiguation</u>
- Athiwaratkun and Wilson (2017), <u>Multimodal Word Distributions</u>
- Abigail See (2017), <u>Four deep learning trends from ACL 2017</u>