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Physics of complex systems

Quantum phases 
of matter

Complex 
Networks

Non-equilibrium
systems

Exotic magnetism



Physics is simple!

dailysnark.com



Building the Deep Learning architectures



Early ML
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Scale of datasets/Computing power
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Do we actually need as much resources 
to go there ?

A naive picture of a recent progress 



Resources are expensive



The goals:
Optimal models
Easier training
Universality



How physics helps for better learning ?

Neural nets and quantum wave functions

Learning the Tensor networks 

Physics of Learning

Redundancy of Neural Nets are redundant ?

Outline



Hopfield network J. Hopfield PNAS 1982

Fully recurrent

Associative memory as valleys in energy space

wikipedia.com



Statistical Physics of learning from examples

@W

@t
= �rWE(W)�rWV (W) + ⌘(t)

Gradient descent as a Langevin equation

in the long time limit

P (W ) =
e��E((W ))

Z

Seung et. al., PRA 1992
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Curse of dimensionality in ML

MNIST pictures
space

Full space of pixel states 2(28⇥28)

Tunable NN capacity



Grows of Quantum State space

Low temperature states 
(interesting part)

e- e-

Full Hilbert space
dimH = (dimh)N ⇡ expN



Industry

Fundamental 
Research



Redundancy of Neural Nets



NN overfit - need Regularized training Srivastava et.al. JMLR 2014



Compression with prunning

Corel JL, The postnatal development of the human cerebral cortex. 1975



Han et. al. Deep Compression ICLR 2016

Compression with prunning



Better architectures pop up regularly

Iandola et.al. arXiv:1602.07360



Physics for better learning



Typical search for good parameters

GPU 1
params 1

GPU 2
params 2

GPU 3
params 3

GPU 4
params 4



Physicist search for good parameters

GPU 1
params 1

GPU 2
params 2

GPU 3
params 3

GPU 4
params 4



Dropout as a temperature

Cost function

p=1

p=0Also typical  picture in spin-glass.

Disconnected 
neurons



Rennie et.al. IEEE 2014 (IBM group)Annealed Dropout

Statistical Physics of learning from examples

hhE(W)ii = P ✏(W)

P = ↵N

T/↵

P0(W) =

exp [�N�↵✏(W)]

Z

Seung et. al., PRA 1992

number of examples scales with respect to network size

in high-temperature limit

with effective temperature

Dropout as a temperature



Cost function

p=1

p=0

Disconnected 
neurons

Rennie et.al. IEEE 2014 (IBM group)Annealed Dropout

Dropout as a temperature



Learning with parallel tempering

GPU 1
params 1

GPU 2
params 2

GPU 3
params 3

GPU 4
params 4

More efficient weight usage
The whole ensemble learns better



Neural Nets 
and 

Quantum wave functions 



Curse of dimensionality in ML

MNIST pictures
space

Full space of pixel states 2(28⇥28)

Tunable NN capacity



Grows of Quantum State space

Low temperature states 
(interesting part)

e- e-

Full Hilbert space
dimH = (dimh)N ⇡ expN



What is the quantum wave function ?



What is the quantum wave function ?
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Large tensor of probabilities for each configuration

|�("#")i = 0.1



Graphical notations 
for tensors 

constant

vector

matrix

matrix product

vi

Mij

X

j

MijMjk

i

i j

i
j

k



Representing Quantum states with tensor networks 

cj1...jN

Large tensor of probabilities for each configuration

|�("#")i = 0.1



Representing Quantum states with tensor networks 

⇡
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Representing Quantum states with tensor networks 

exp(N)

Nd�2
max

Strong reduction of complexity
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Representing Quantum states with tensor networks 

dimH = (dimh)N ⇡ expN

�1�2 >

exp(N) Nd�2
max

vs



Quantum Machine Learning 
with Tensor Networks 

Stoudenmire et. al., NIPS 29, 4799 (2016)
Han et.al., ArXiv:1709.01662 (2017)



ML with Tensor Networks 

f l(x) = W l · �(x)



ML with Tensor Networks 

f l(x) = W l · �(x)
l
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Tensorizing weights and data

1 2

3 4

f l(x) = W l · �(x)
l

W l
s1,s2,s3,s4

1 2 3 4



1 2

3 4

f l(x) = W l · �(x)
l

W l
s1,s2,s3,s4

map pixels to 
vectors

Tensorizing weights and data
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Tensorizing weights and data

1 2 3 4



tensorize weights 
matrix

f l(x) = W l · �(x)
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Tensorizing weights and data

1 2 3 4
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Updating the weights

1 2 3 4

l



Updating the weights
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Updating the weights
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Updating the weights
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Updating the weights
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99.03% on 1D MNIST



Network adjusts itself according to data complexity

Han et.al., ArXiv:1709.01662 (2017)

large bond 
dimension

decorrelated 
pixels



Optimal distribution modelling

darksilverflame.deviantart.com



Optimal distribution modelling

Han et.al., ArXiv:1709.01662 (2017)



A Zoo of open architectures and tricks! 



Extrapolation to Quantum Qubit arrays ?

www.kavlifoundation.org

http://www.kavlifoundation.org/
http://www.kavlifoundation.org/


Thank you!


