Physics inspired Machine Learning

Mykola Maksymenko, Research Lead at SoftServe R&D

Research Lead at SoftServe R&D

- PhD in Theoretical Physics

- Max-Planck Institute for the Physics of **Complex Systems** (Germany)

- Weizmann Institute of Science (Israel) - Institute for Condensed Matter Physics

of NASU

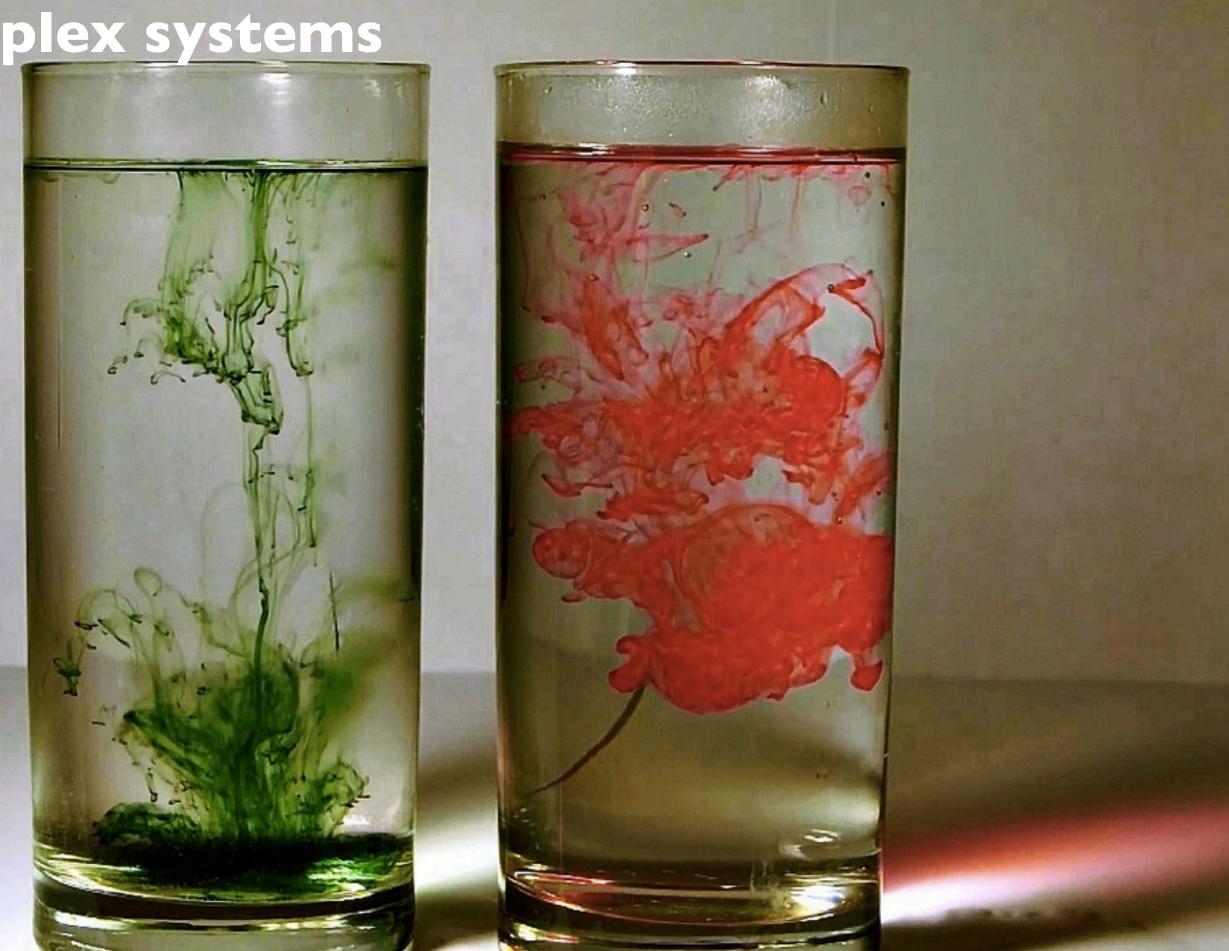
Physics of complex systems

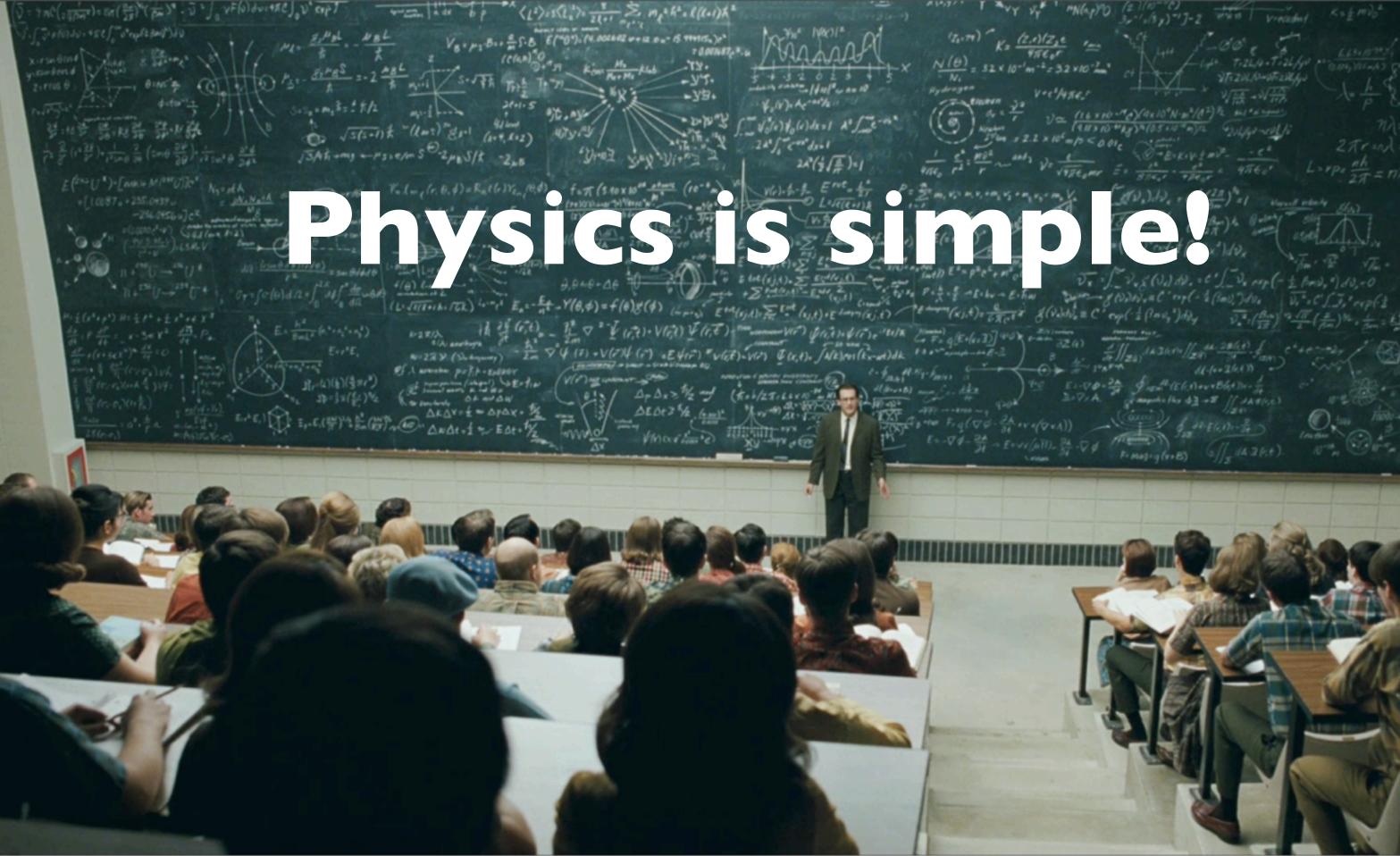
Quantum phases of matter

Complex Networks

Non-equilibrium systems

Exotic magnetism

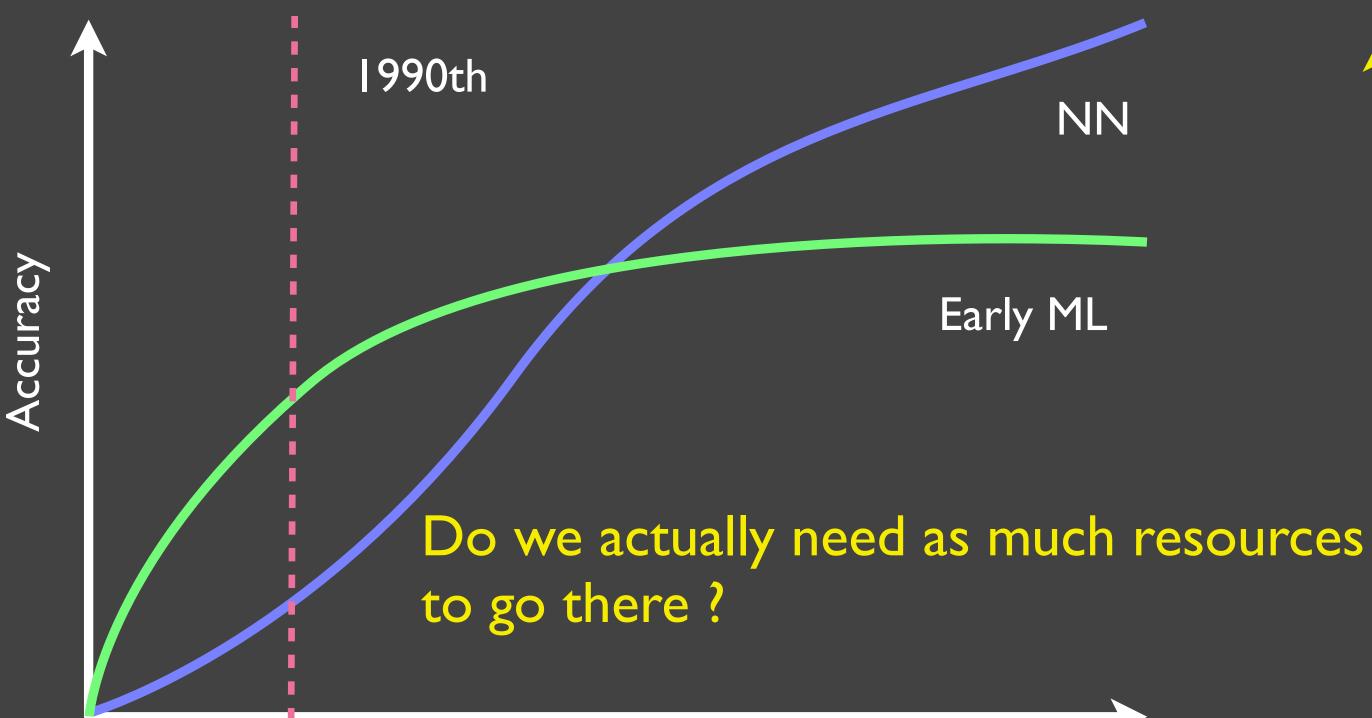




AVART T VY YY " "N(ap)"O (21/10-C) 3,-10(3,)-17-2 Vrocator Ni ydragen Vec²/4#e¹ (m) dy = 2² V= (16×10⁻¹e)(9×10⁹N·m²/d²)⁵ m1·2 upper ((m) upper (m) up @=E=K+V.fmV-TYREOME E: 14 - et a 9760' Larpa 27 = nt B 4 - de 1/24 AA360 //20 - 4 de-for= 24.4 m) 40 Es- VD-2A Jas A (Elet) av Blot) - d Zo VA. grannholky 32-5 / (ABIO.C) $\frac{d(arres)}{d(arres)} = \frac{1}{24} \frac{1}$ dailysnark.com

Building the Deep Learning architectures

A naive picture of a recent progress



Scale of datasets/Computing power

Resources are expensive

Andrej Karpathy @karpathy

Читати

TitanX runs at ~200W (0.72MJ/h). In ~12h that's ~8MJ. Energy content of wood is 20MJ/kg, so running 1 TitanX overnight burns 1 pound of wood

11:00 - 13 жовт. 2015

The goals: Optimal models

Easier training Universality

Outline

Physics of Learning

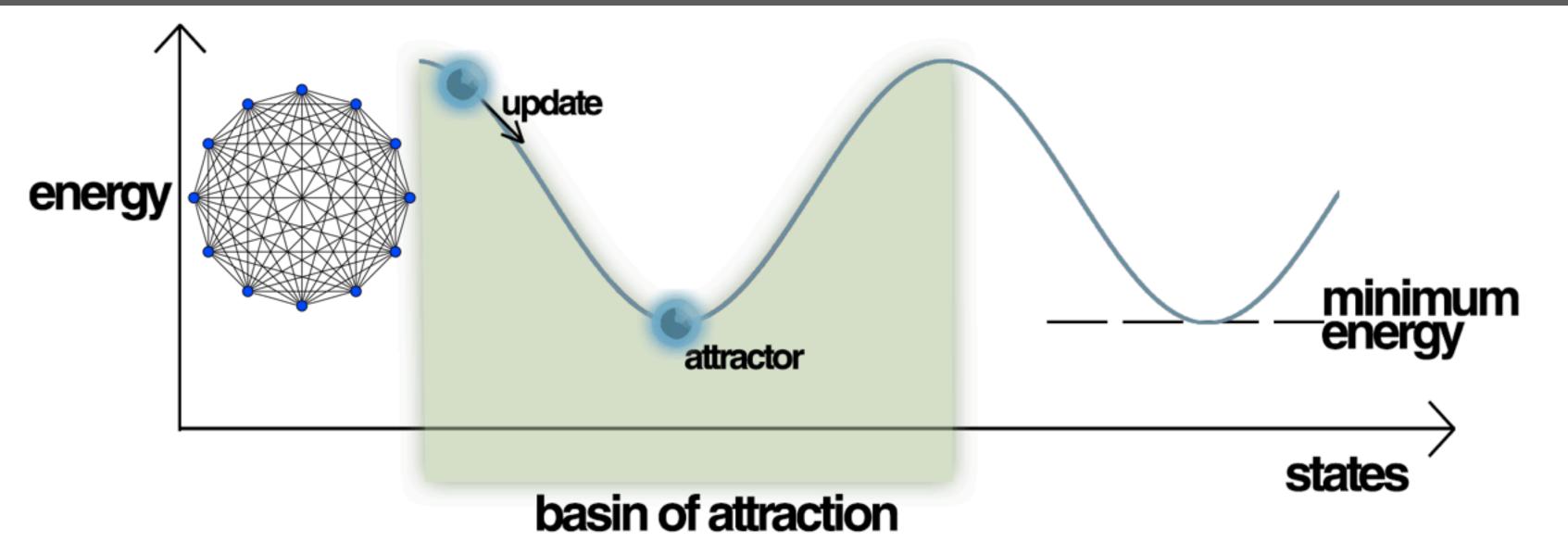
Redundancy of Neural Nets are redundant?

How physics helps for better learning?

Neural nets and quantum wave functions

Learning the Tensor networks

Hopfield network J. Hopfield PNAS 1982



Fully recurrent

Associative memory as valleys in energy space

wikipedia.com

Statistical Physics of learning from examples

Seung et. al., PRA 1992

Gradient descent as a Langevin equation

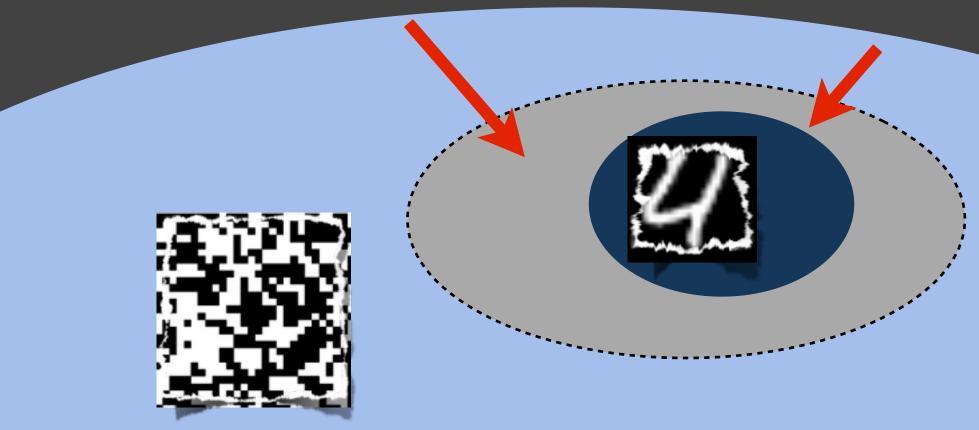
$$\frac{\partial \mathbf{W}}{\partial t} = -\nabla_{\mathbf{W}} E(\mathbf{W}) + \eta$$

in the long time limit

e

Curse of dimensionality in ML

Tunable NN capacity



 $2^{(28 \times 28)}$

Full space of pixel states

MNIST pictures space

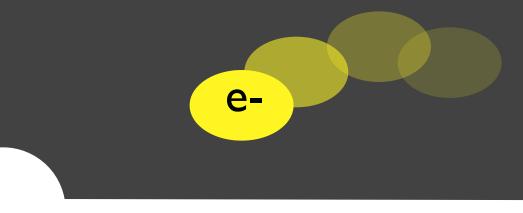
Grows of Quantum State space

Low temperature states (interesting part)

$\dim \mathcal{H} = (\dim h)^N \approx \exp N$

e-

Full Hilbert space

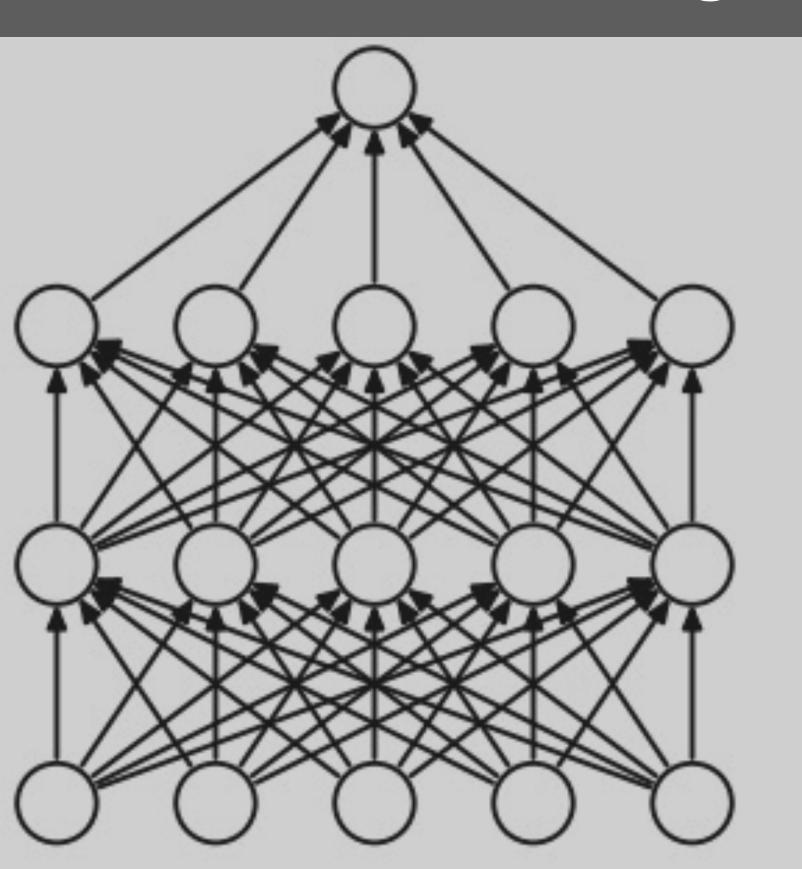


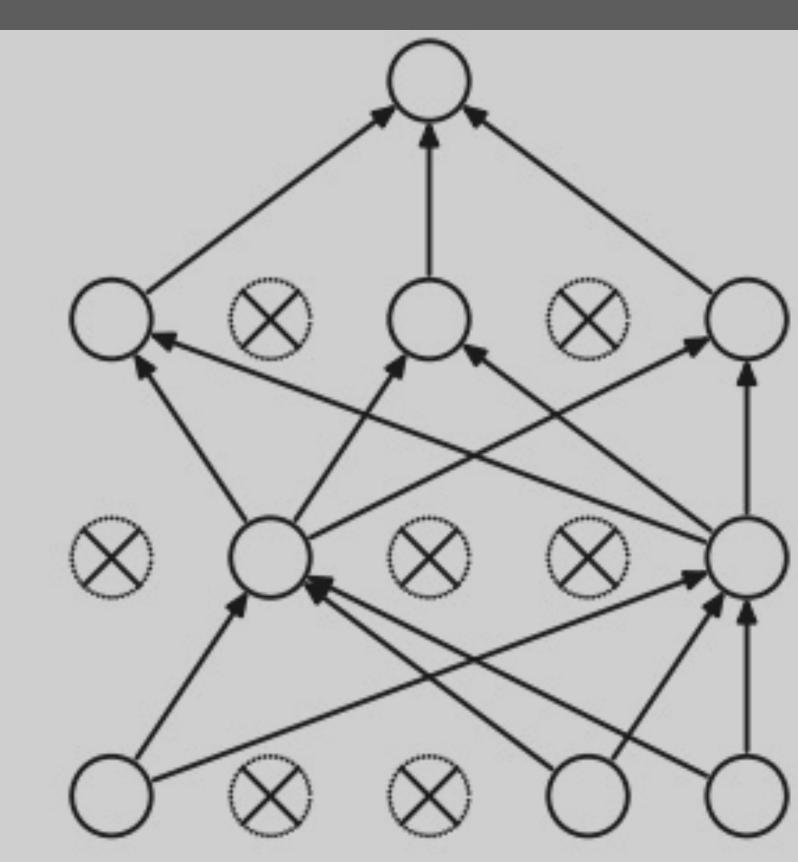
Fundamental Research

Industry

Redundancy of Neural Nets

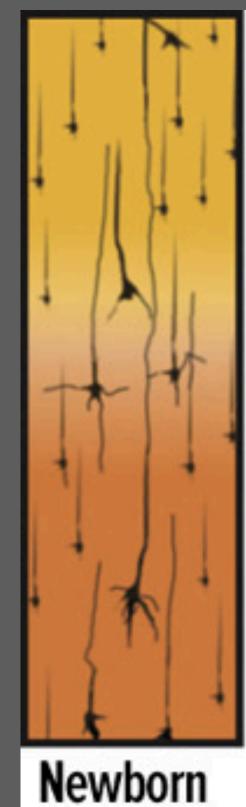
NN overfit - need Regularized training

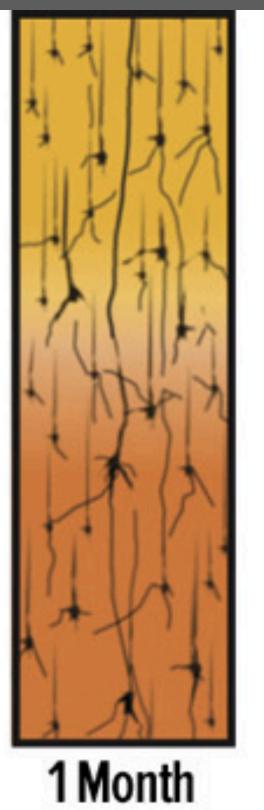




Srivastava et.al. JMLR 2014

Compression with prunning





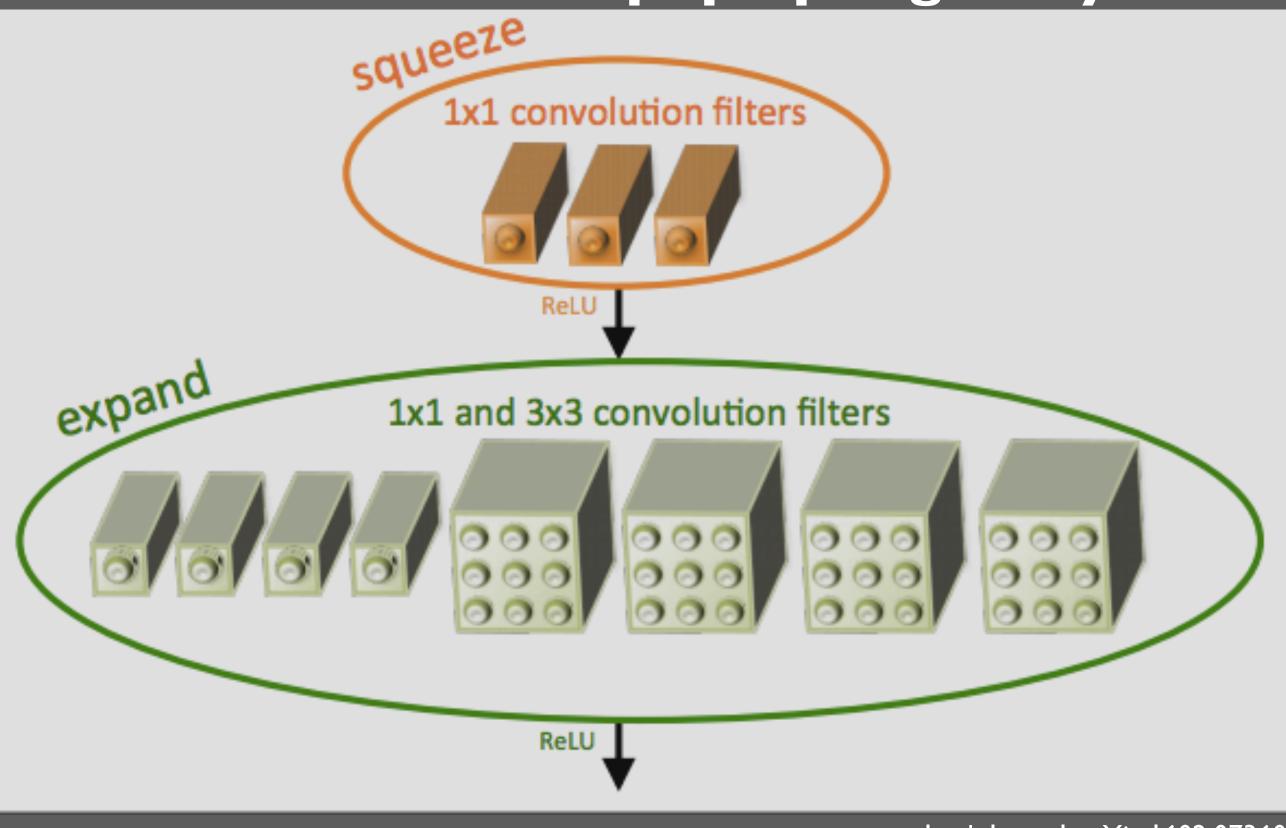
Corel JL, The postnatal development of the human cerebral cortex. 1975

Compression with prunning

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
LeNet-300-100 Ref	1.64%	-	267K	
LeNet-300-100 Pruned	1.59%	-	22K	12 imes
LeNet-5 Ref	0.80%	-	431K	
LeNet-5 Pruned	0.77%	-	36K	12 imes
AlexNet Ref	42.78%	19.73%	61M	
AlexNet Pruned	42.77%	19.67%	6.7M	$9 \times$
VGG16 Ref	31.50%	11.32%	138M	
VGG16 Pruned	31.34%	10.88%	10.3M	13 imes

Han et. al. Deep Compression ICLR 2016

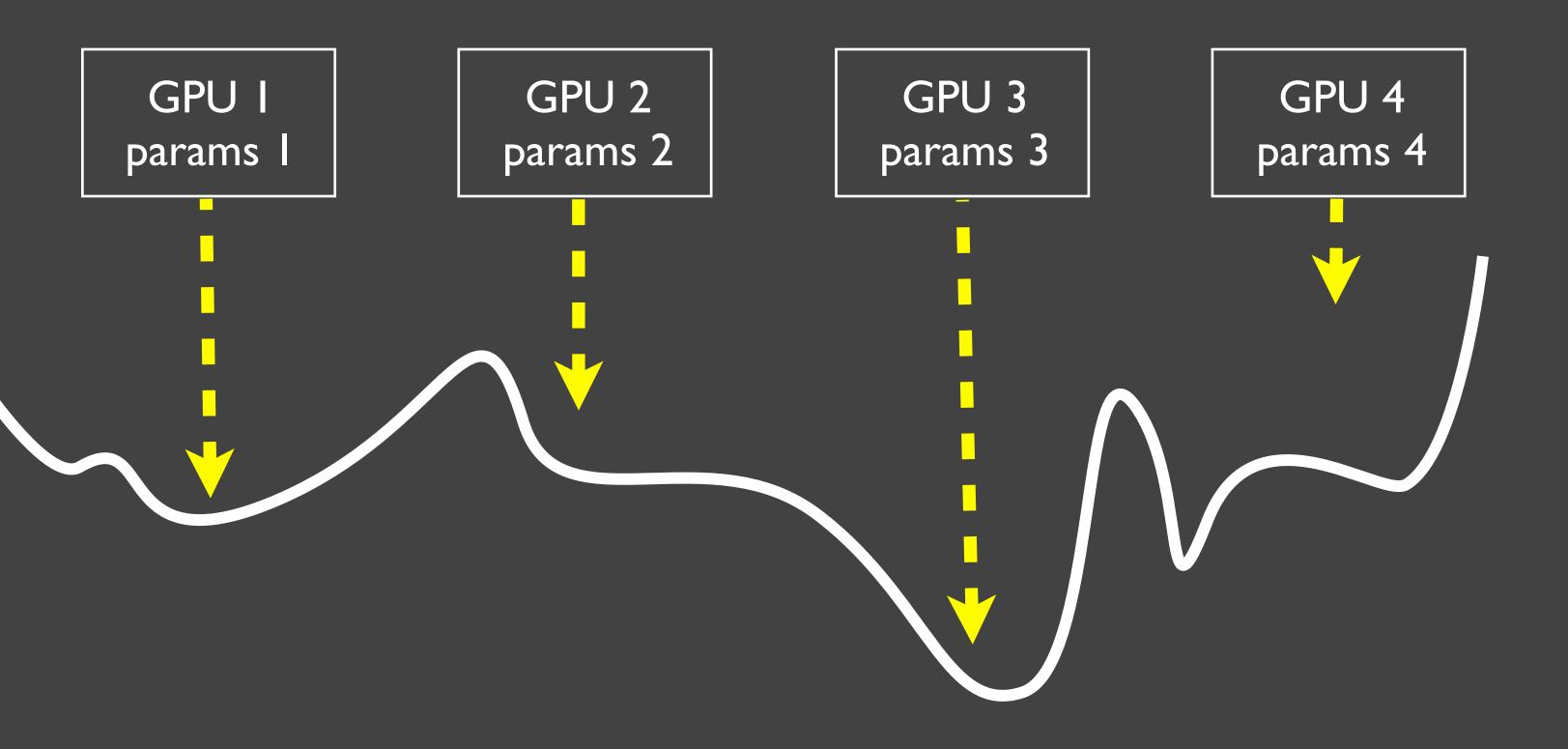
Better architectures pop up regularly



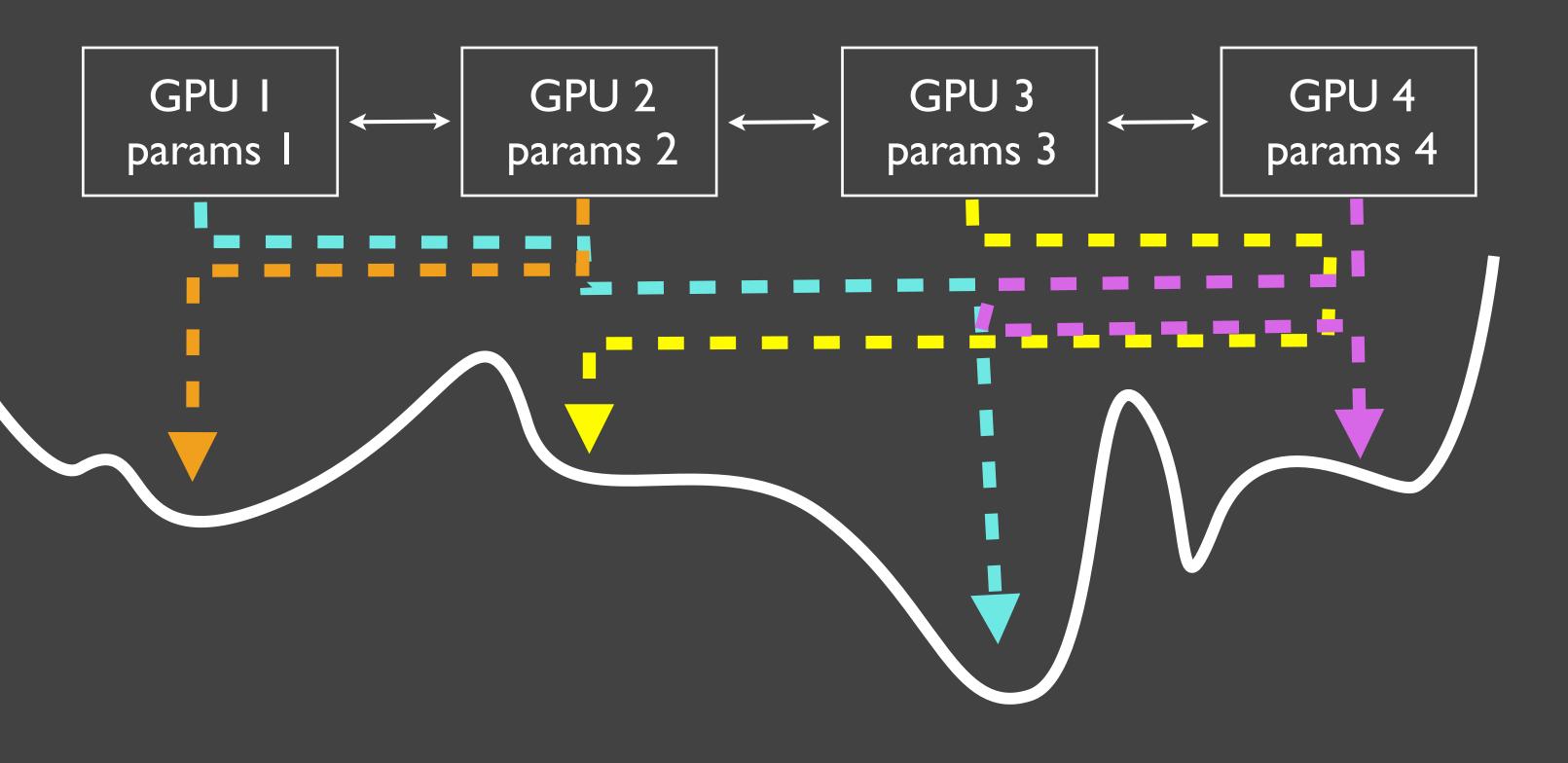
landola et.al. arXiv:1602.07360

Physics for better learning

Typical search for good parameters

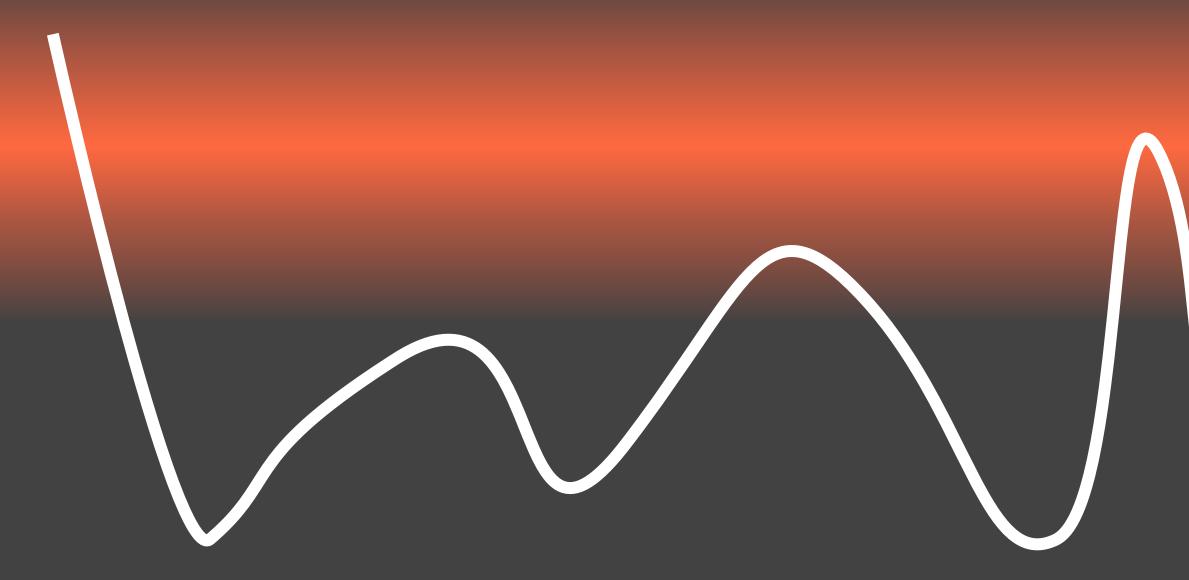


Physicist search for good parameters



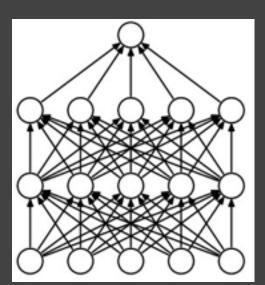
Dropout as a temperature

Cost function



Also typical picture in spin-glass.

Disconnected neurons



Dropout as a temperature

Statistical Physics of learning from examples

Seung et. al., PRA 1992

 $\langle \langle E(\mathbf{W}) \rangle \rangle = P \epsilon(\mathbf{W})$

 $P = \alpha N$ number of examples scales with respect to network size

$$P_0(\mathbf{W}) = \frac{\exp\left[-N\beta\alpha\epsilon(\mathbf{W})\right]}{Z}$$

in high-temperature limit

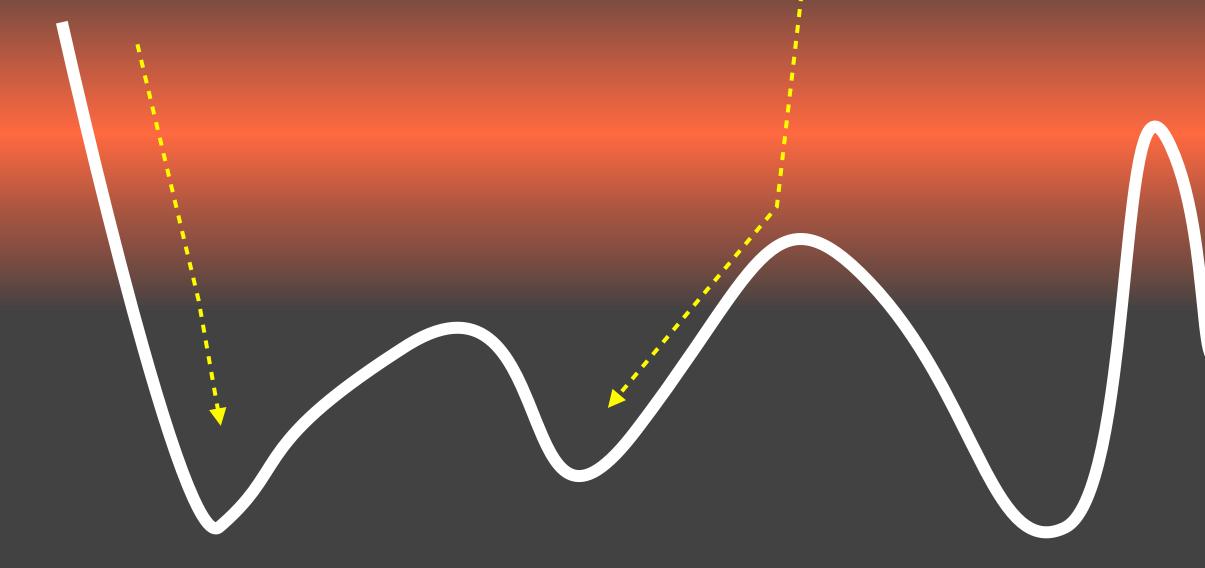
with effective temperature ~T/lpha

Annealed Dropout

Rennie et.al. IEEE 2014 (IBM group)

Dropout as a temperature

Cost function

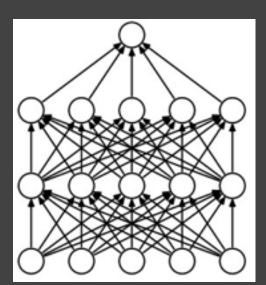


Annealed Dropout

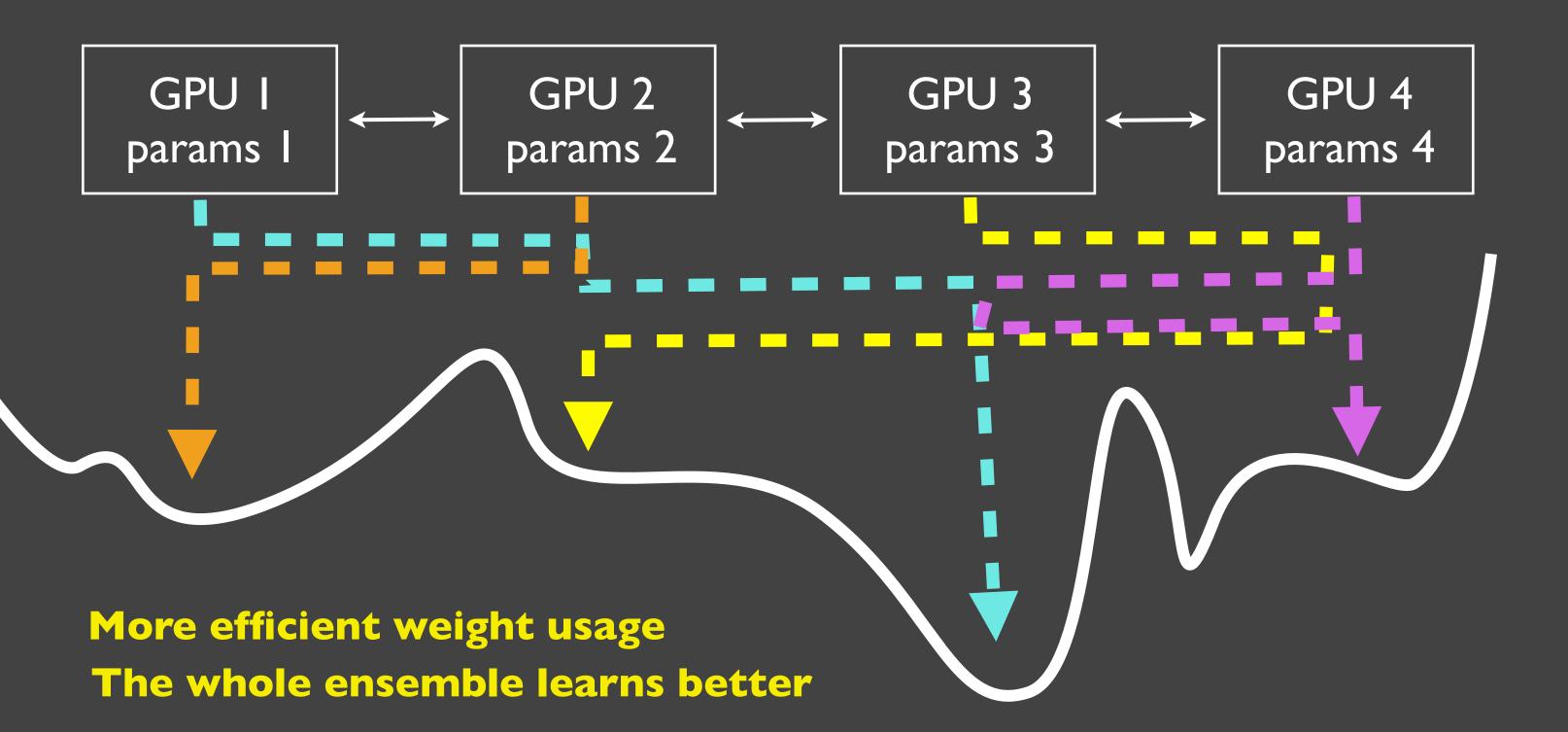
Rennie et.al. IEEE 2014 (IBM group)

p=0

Disconnected neurons



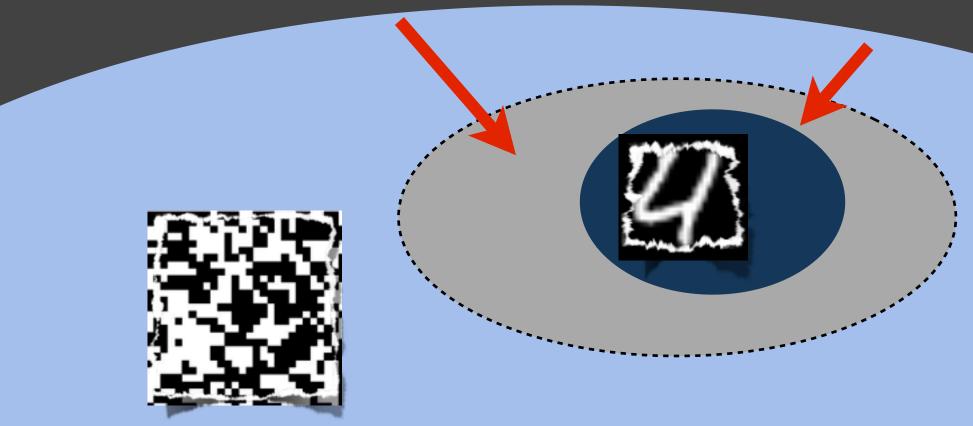
Learning with parallel tempering



Neural Nets and Quantum wave functions

Curse of dimensionality in ML

Tunable NN capacity



 $2^{(28 \times 28)}$

Full space of pixel states

MNIST pictures space

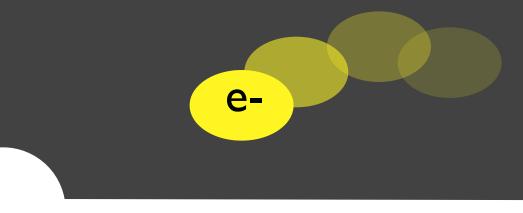
Grows of Quantum State space

Low temperature states (interesting part)

$\dim \mathcal{H} = (\dim h)^N \approx \exp N$

e-

Full Hilbert space



What is the quantum wave function ?

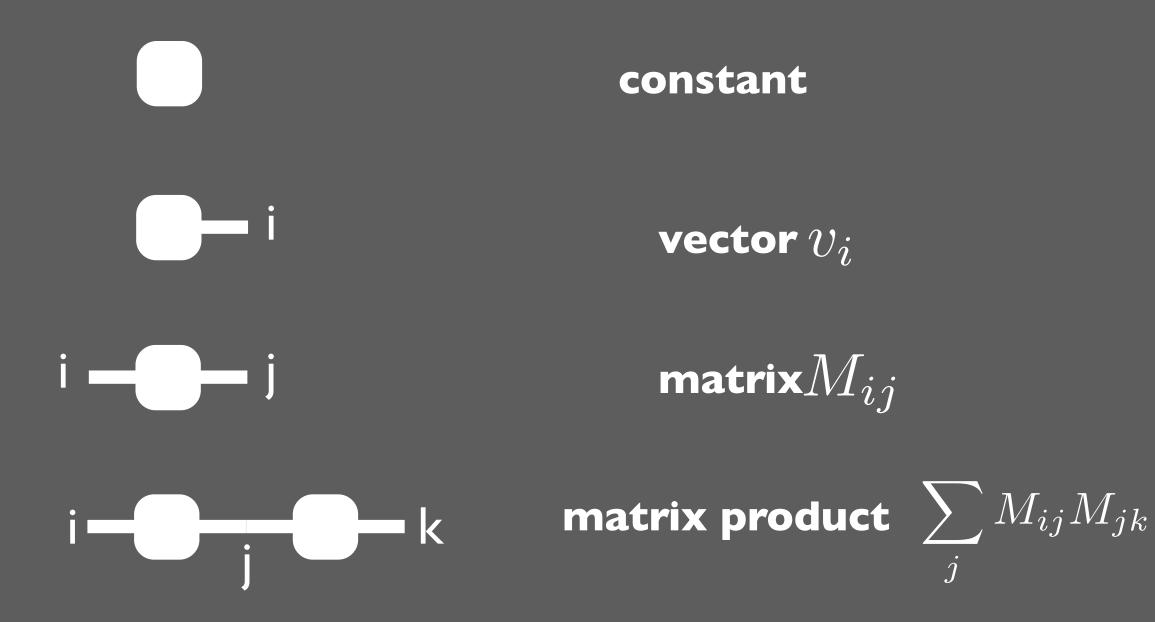
What is the quantum wave function ?

$$\begin{vmatrix} \phi \end{pmatrix} = \sum_{\substack{j_1 = \uparrow, \downarrow \dots j_N = \uparrow, \downarrow}} c_{j_1, \dots, J_N} \begin{vmatrix} j_1 \end{vmatrix}$$

Large tensor of probabilities for each configuration

$$\left|\phi(\uparrow\downarrow\uparrow)\right\rangle = 0.1$$

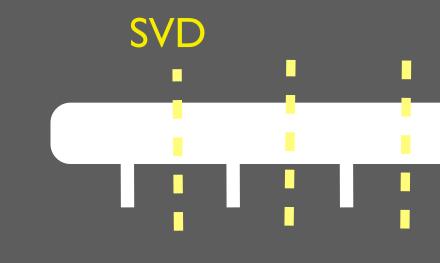
$\rangle \dots |j_N\rangle$



$$c_{j_1...j_N}$$

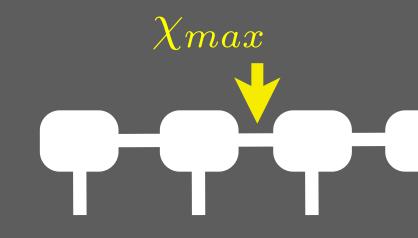
Large tensor of probabilities for each configuration

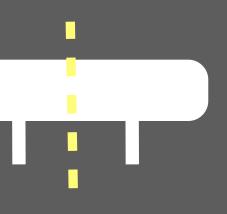
$$\left|\phi(\uparrow\downarrow\uparrow)\right\rangle = 0.1$$



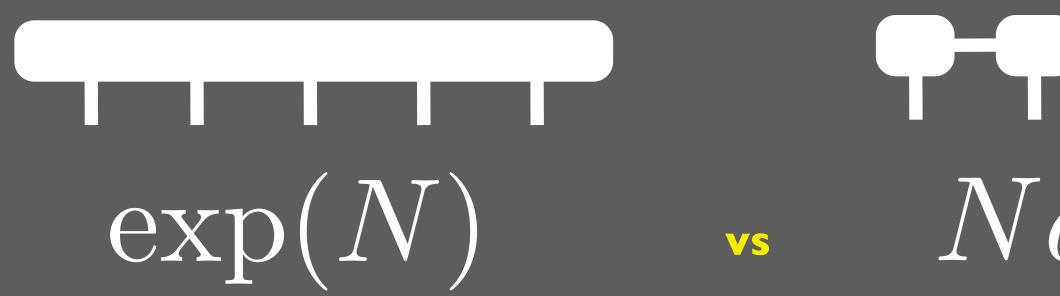
 $c_{j_1...j_N}$

 $A_{j_1,\alpha,\beta}^{[1]} \overline{A_{j_2,\alpha,\beta}^{[2]}} \dots \overline{A_{j_N,\alpha,\beta}^{[N]}}$





 χ_{max}



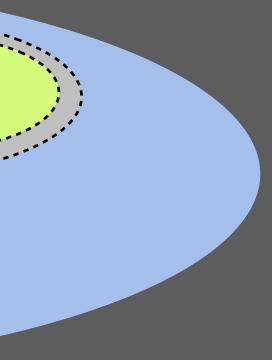
Strong reduction of complexity

$Nd\chi^2_{max}$

$\exp(N)$ vs $Nd\chi^2_{max}$

 $\dim \mathcal{H} = (\dim h)^N \approx \exp N$

 $\chi_2 >$



- Quantum Machine Learning with Tensor Networks

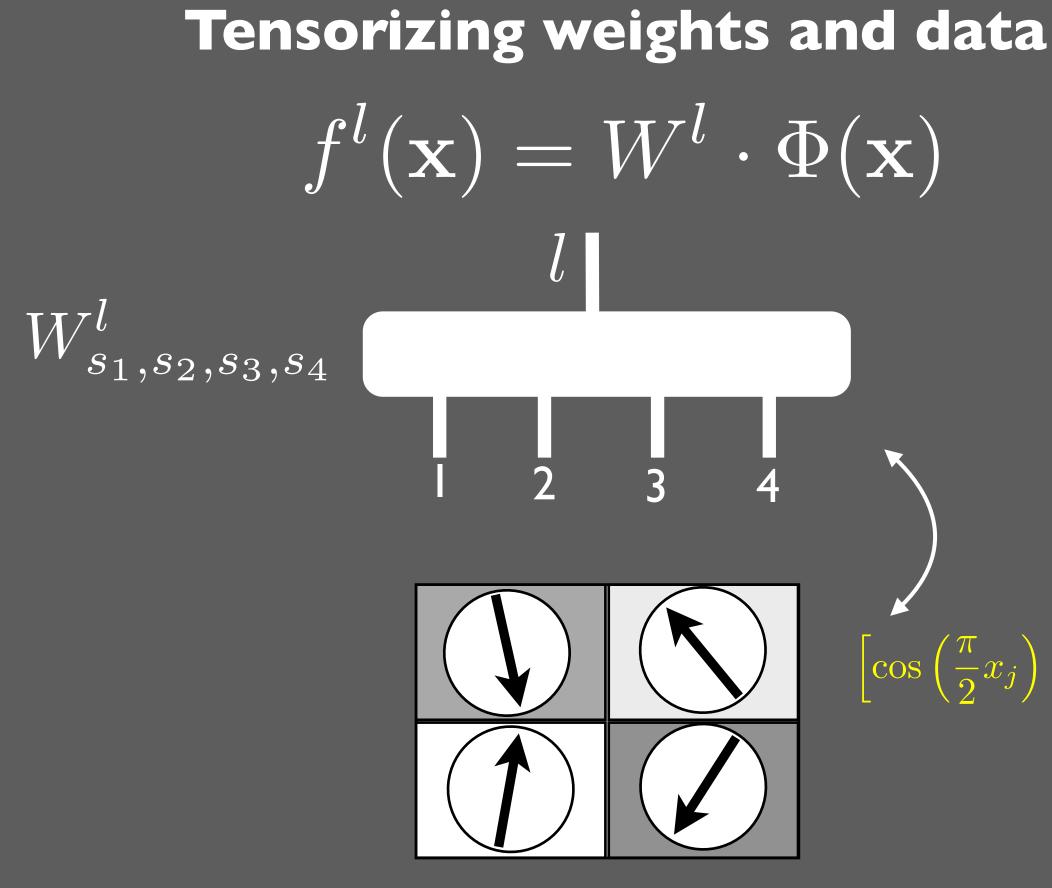
Stoudenmire et. al., NIPS 29, 4799 (2016) Han et.al., ArXiv:1709.01662 (2017)

ML with Tensor Networks

 $f^l(\mathbf{x}) = W^l \cdot \Phi(\mathbf{x})$

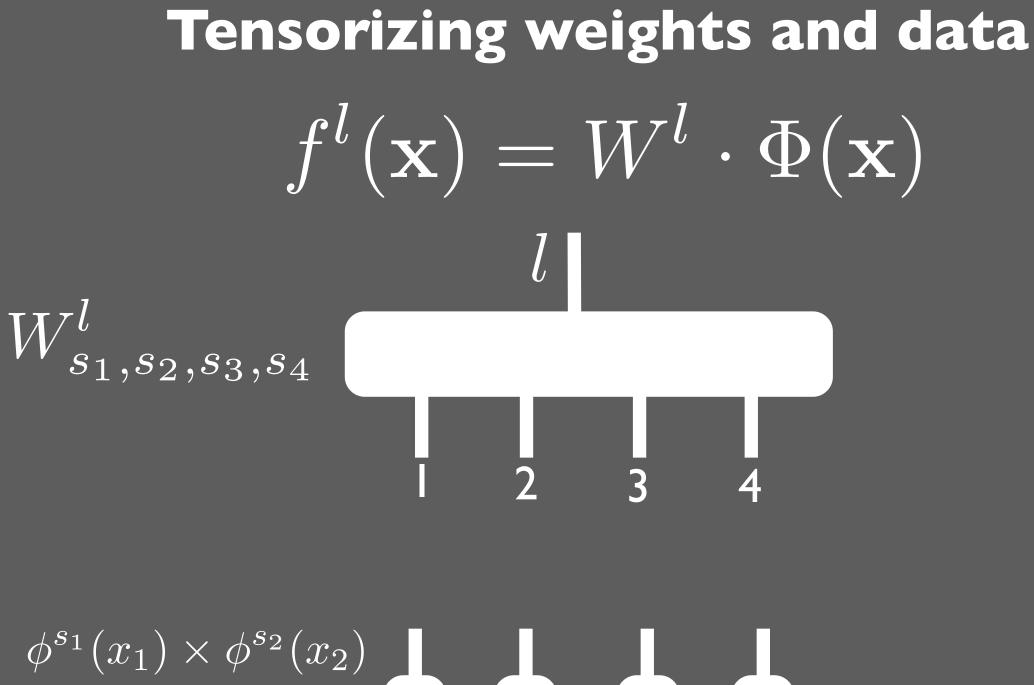
ML with Tensor Networks $f^l(\mathbf{x}) = W^l \cdot \Phi(\mathbf{x})$

Tensorizing weights and data $f^l(\mathbf{x}) = W^l \cdot \Phi(\mathbf{x})$ $W^{l}_{s_{1},s_{2},s_{3},s_{4}}$



map pixels to vectors

 $\left[\cos\left(\frac{\pi}{2}x_j\right), \sin\left(\frac{\pi}{2}x_j\right)\right]$

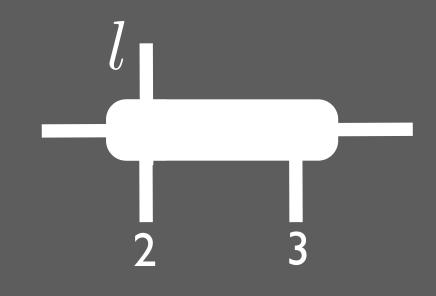


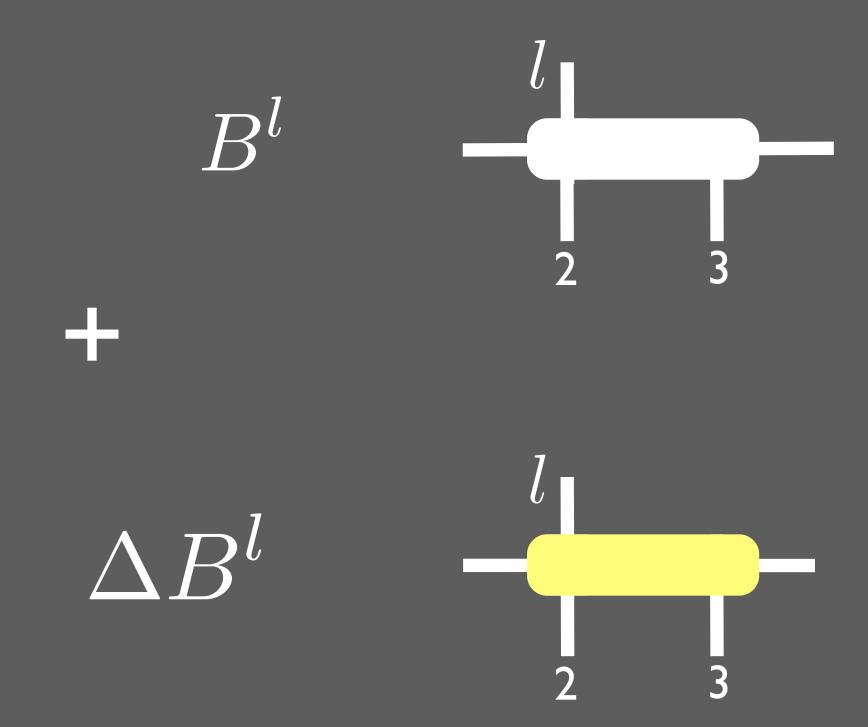
 $\phi^{s_1}(x_1) \times \phi^{s_2}(x_2)$ $\times \phi^{s_3}(x_3) \times \phi^{s_4}(x_4)$

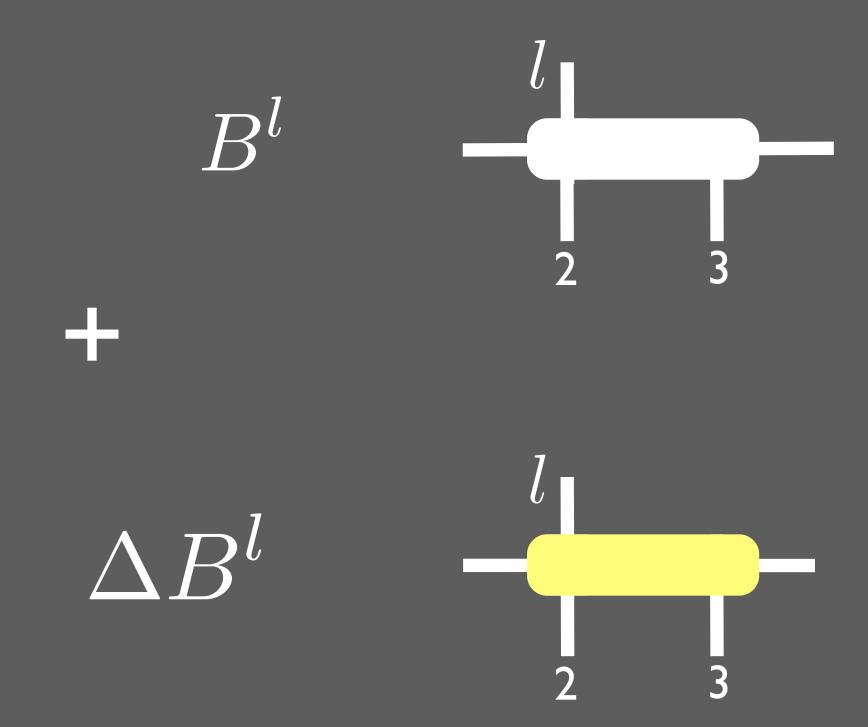
Tensorizing weights and data $f^l(\mathbf{x}) = W^l \cdot \Phi(\mathbf{x})$ W_{s_1,s_2,s_3,s_4}^l

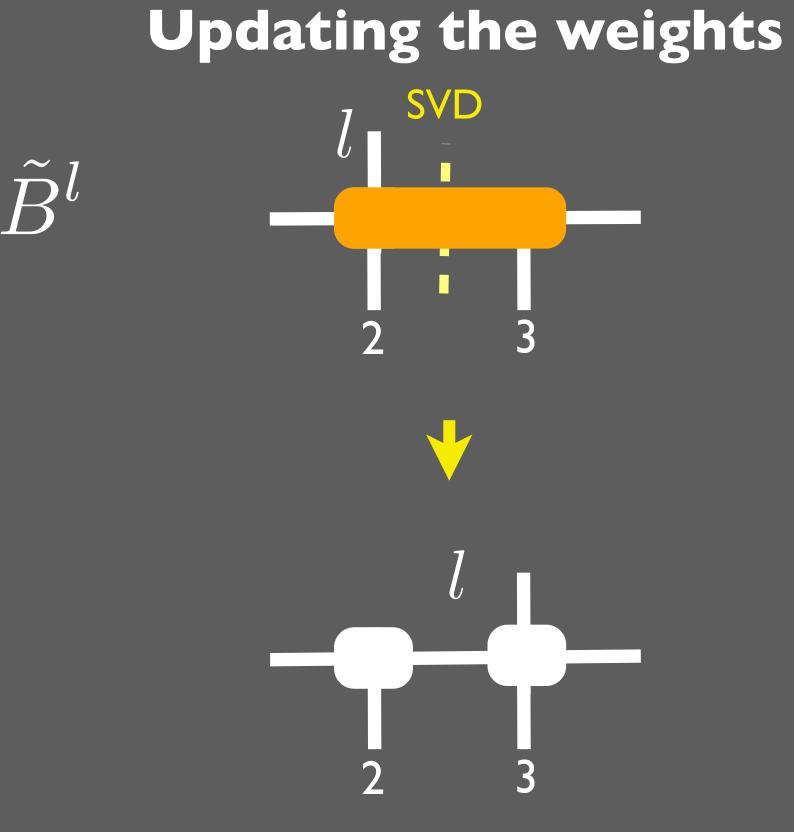
 $\phi^{s_1}(x_1) \times \phi^{s_2}(x_2)$ $\times \phi^{s_3}(x_3) \times \phi^{s_4}(x_4)$

tensorize weights matrix



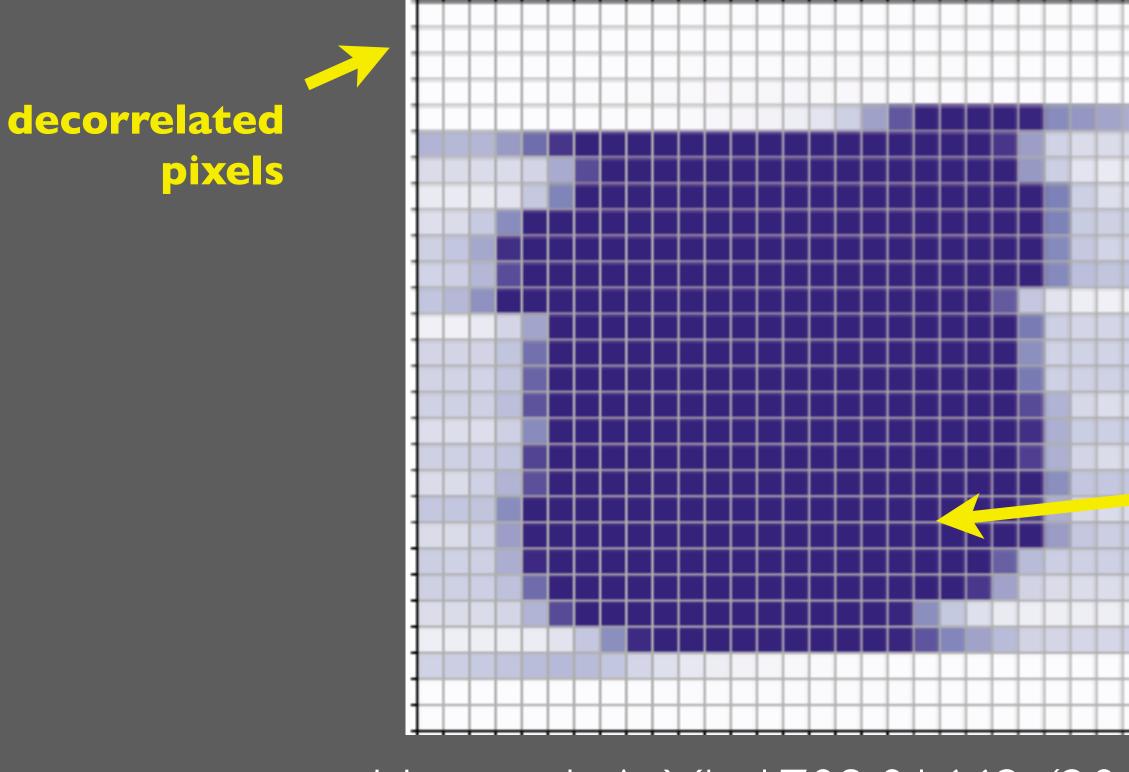






) *0 0 0 0 0 0 0* 99.03% on ID MNIST えるてるこころ。 333333 144444

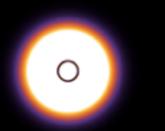
Network adjusts itself according to data complexity



Han et.al., ArXiv:1709.01662 (2017)

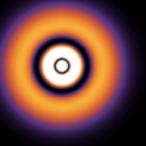
large bond dimension

Optimal distribution modelling

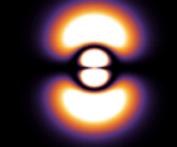


(2,1,0)

$$\psi_{n\ell m}(r,\vartheta,\varphi) = \sqrt{\left(\frac{\rho}{r}\right)^3 \frac{(n-\ell)}{2n(n+\ell)}}$$
$$\rho = \frac{2r}{na_0} \qquad dark$$



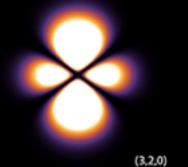
(3,0,0)

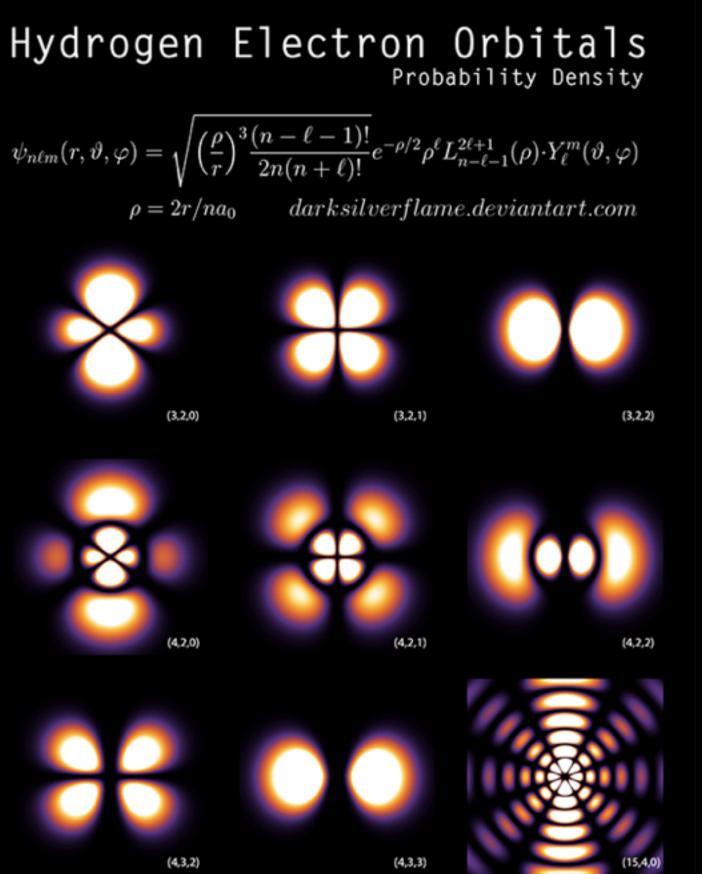


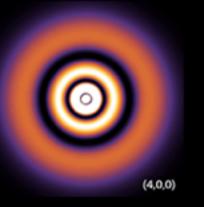
(3,1,0)

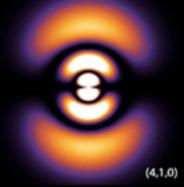
(3,1,1)

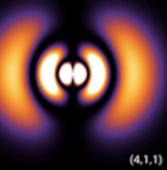
(2,1,1)



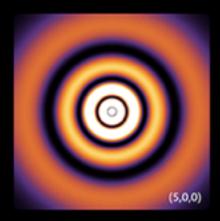


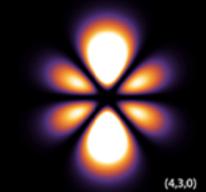


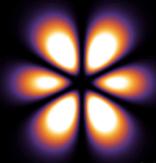




(4,2,0)









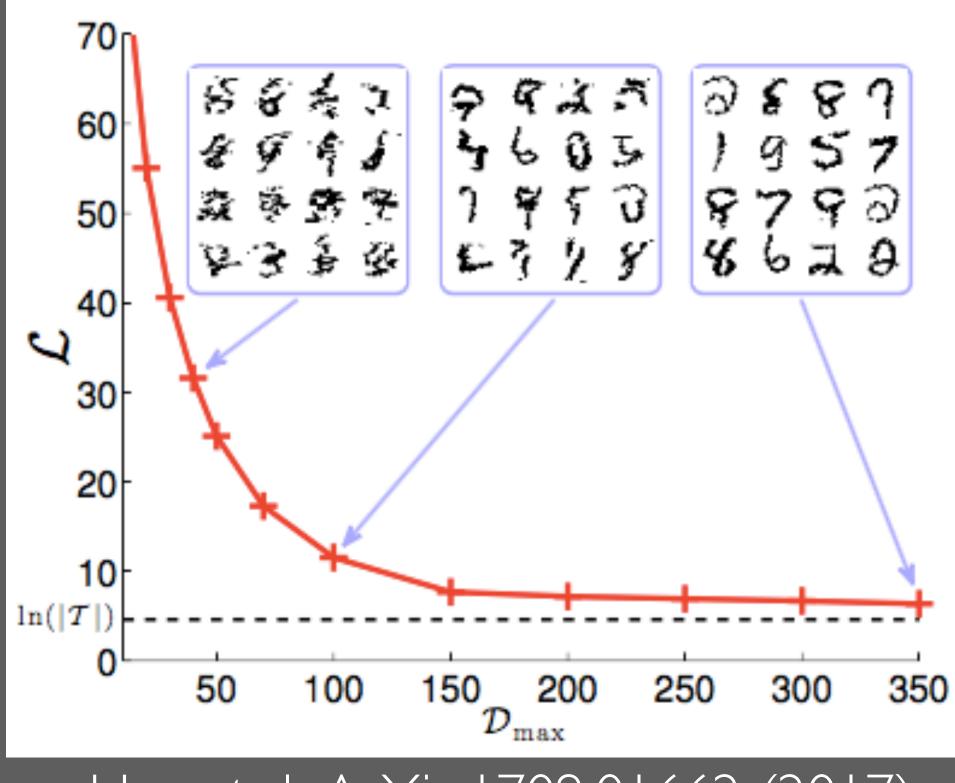


(4,3,1)

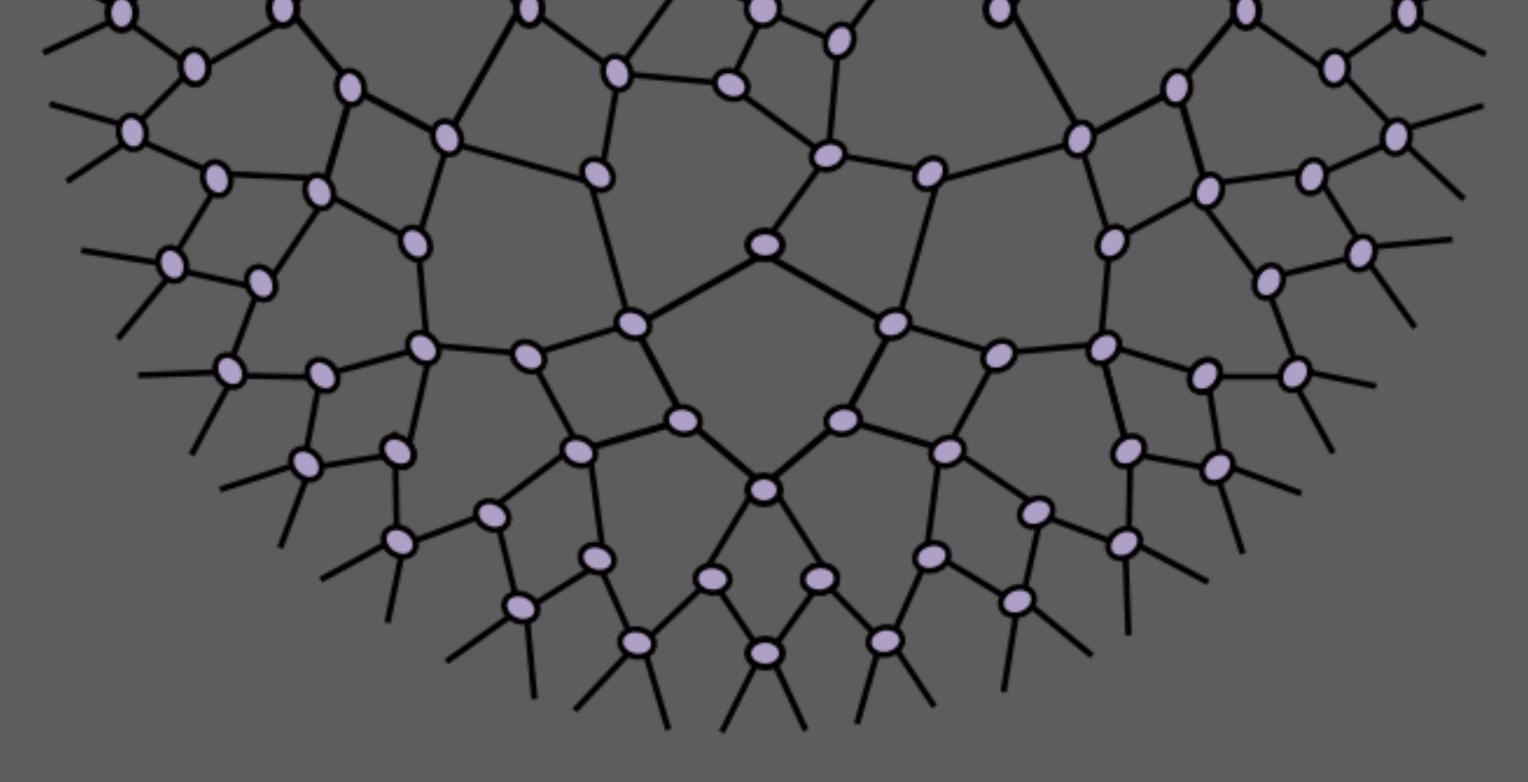
(4,3,2)

darksilverflame.deviantart.com

Optimal distribution modelling

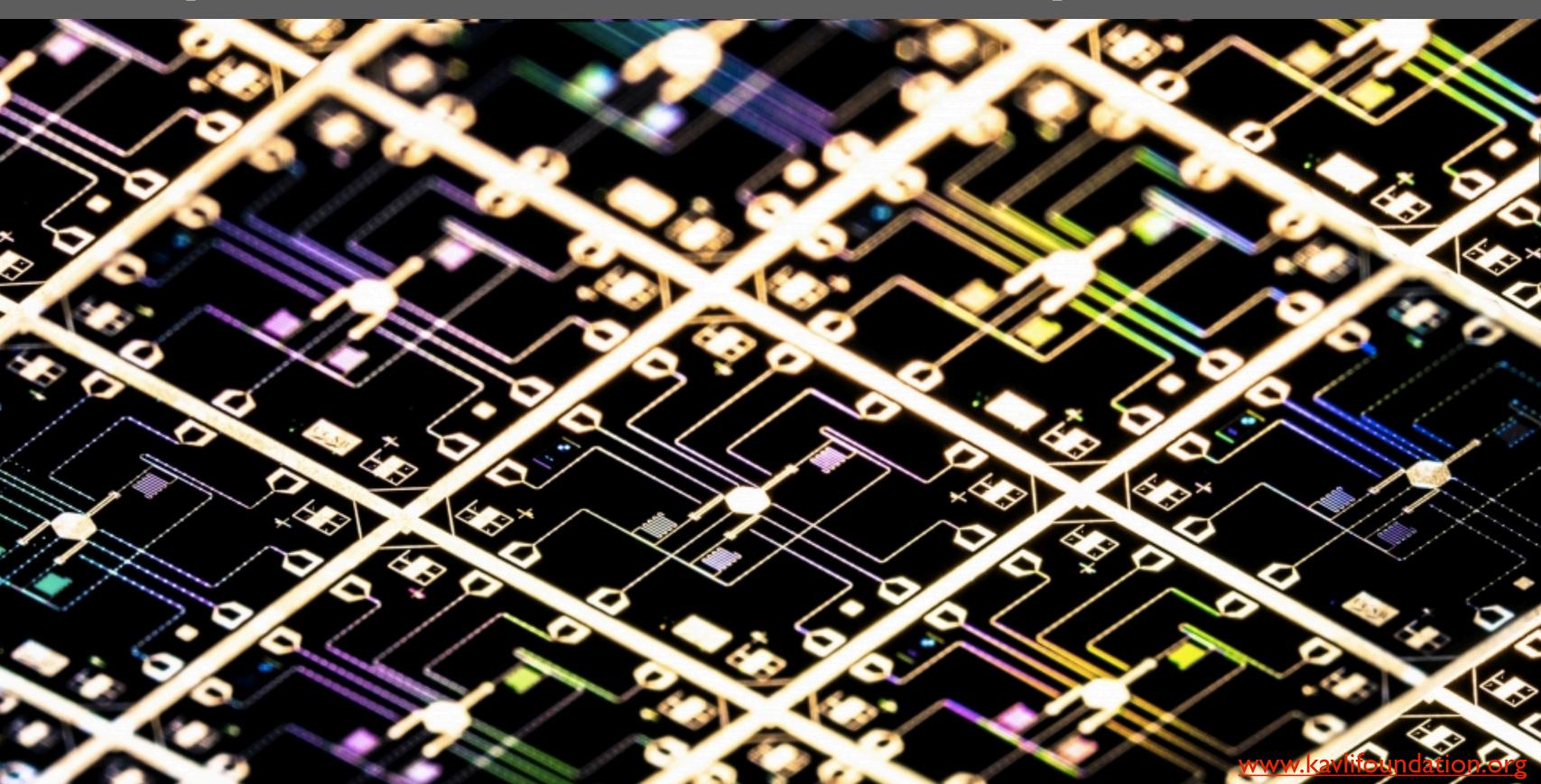


Han et.al., ArXiv: 1709.01662 (2017)



A Zoo of open architectures and tricks!

Extrapolation to Quantum Qubit arrays ?



= + 12 .0 == 15 .999115=)e* = 0.007687e

-YY+

-**-**Y9+

Thank you!

Etree (KI't)= 2 Erec

Elot (xj,t) = Ecollej, () "

(Z1=79) V- (Z.e)(Z1e