
Convolutional Sequence to

Sequence Learning
Denis Yarats

with Jonas Gehring, Michael Auli, David Grangier, Yann

Dauphin

Facebook AI Research

Sequence generation

• Need to model a conditional distribution

• Repeatedly predict what will happen next, use your past

predictions as if they were real

Sequence generation

• Language modeling

• Machine translation

• Speech generating

• Image generation

• etc.

Sequence generation

• How to model ?

• Let's use Recurrent Neural Network

Recurrent Neural Network

• Like feed forward networks, except allows self connections

• Self connections are used to build an internal representation

of past inputs

• They give the network memory

Figures from: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Recurrent Neural Network

• Given list of inputs x:

• At each timestamp do:

• Then:

Figures from: http://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

Recurrent Neural Network

• is probability distribution over vocabulary

• To train the network, minimize cross-entropy:

Figures from: http://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

Recurrent Neural Network

• The notorious vanishing/exploding gradients problem

Figures from: http://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

where

thus

Long Short Term Memory (LSTM)

• Modification of RNN to have longer memory

• Additional memory cell to store information

• RNN overwrites the hidden state, LSTM adds to the hidden

state

• Hochreiter et al. 1997

Figures from: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sequence to Sequence

• Make NN to read one sequence and produce another

• Use 2 LSTMs

• Sutskever et al. 2014

Figures from: http://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ilya_LSTMs_for_Translation.pdf

Sequence to Sequence

• Encoder - encodes input sequence

• Decoder - generates output sequence, conditioning on the

input representation

Figures from: http://cs224d.stanford.edu/lectures/CS224d-Lecture9.pdf

Attention

• Incorporate all hidden states of encoder, rather than the last

one

• Bahdahau et al. 2014

Figures from: https://distill.pub/2016/augmented-rnns

Attention

• Use weighted combination of each encoder hidden state

• Alignment model:

• Weights:

• Weighted sum:

Figures from: https://distill.pub/2016/augmented-rnns

Attention

• Example of attention for machine translation

Figures from: https://distill.pub/2016/augmented-rnns

LSTM based Seq2Seq: Problems

• Still challenging to model long term dependencies

• RNNs are hard to parallelize because of non-homogeneous

nature

• Convolutional neural networks to the rescue?

Convolutional Neural Network

• Great success in computer vision: AlexNext, VGG, ResNet, ...

• Efficient implementation on GPU

Figures from: http://cs231n.github.io/convolutional-networks

Convolutional Neural Network

• Each output neuron is a linear combination of input neurons in

some spatial neighborhood

• Unlike a feed forward network, where it is connected to every

input neurons

• Parameter sharing and better scalability

Figures from: http://cs231n.github.io/convolutional-networks

fully connected convolution

Convolutional Neural Network

• Convolution can also be used for sequences

• Temporal convolution

Figures from: http://colah.github.io/posts/2014-07-Conv-Nets-Modular

Convolutional Neural Network

• Hierarchical processing: bottom-up vs. left-right

• Homogeneous: all elements processed in the same way

• Scalable computation: parallelizable, suited for GPUs

vs.

ConvS2S: LSTM based Seq2Seq

ConvS2S: Convolutional Encoder

ConvS2S: Convolutional Encoder

ConvS2S: Convolutional Decoder

ConvS2S: Convolutional Decoder

Convolutional block structure for encoder:

• Gated linear units, residual connections

• z0 = embeddings

• word or sub-word embedding

• plus position embedding: 0,1,2,...

ConvS2S: Encoder

Convolutional block structure for decoder:

• Gated linear units and residual

connections

• h0 = embeddings (word + pos)

• Soft attention pass at every layer

ConvS2S: Decoder

ConvS2S: All together

Putting it all together:

• Here: single-layer encoder and

decoder

• High training efficiency due to

parallel computation in decoder

ConvS2S: Architecture

• 15 layers in both encoder and decoder

• Convolutional kernel size is 3

• Hidden size gradually increases from 512 to 4096

• Embedding size is 512

ConvS2S: Training

• Optimizer: Nesterov with momentum

• Learning rate 0.25, momentum 0.99

• Gradient clipping if norm exceeds 0.1

• Batch size 64

• Data parallel training: all-reduct gradients after each iteration

• Model is implemented in Torch (PyTorch implementation is

coming)

ConvS2S: Tricks

• WeighNorm (Salimans et al. 2016)

• Dropout (Srivastava et. al. 2014)

• Scale outputs of each layer to normalize variance

• Careful weight initialization to ensure normally distributed

variance

Results on English-German (WMT'14, newstest2014)

ConvS2S: Results

System Vocabulary BLEU

ByteNet v2 (Kalchbrenner et al., 2016) Characters 23.75

GNMT (Wu et al., 2016) Word 80k 23.12

GNMT (Wu et al., 2016) Word pieces 24.61

ConvS2S BPE 40k 25.16

Transformer (Vaswani et al., 2017) Word pieces 28.4*

Results on English-French (WMT'14, newstest2014)

ConvS2S: Results

System Vocabulary BLEU

GNMT (Wu et al., 2016) Word 80k 37.90

GNMT (Wu et al., 2016) Word pieces 38.95

GNMT + RL (Wu et al., 2016) Word pieces 39.92

ConvS2S BPE 40k 40.46

Transformer (Vaswani et al., 2017) Word pieces 41.0*

Translation speed on English-French (WMT'14, dev set)

ConvS2S: Speed

System Hardware BLEU Time (s)

GNMT (Wu et al., 2016) CPU (88 cores) 31.20 1322

GNMT (Wu et al., 2016) GPU (K80) 31.20 3028

GNMT + RL (Wu et al., 2016) TPU 31.21 384

ConvS2S, beam=5 CPU (48 cores) 34.10 482

ConvS2S, beam=5 GPU (K40) 34.10 587

ConvS2S, beam=5 GPU (GTX-1080ti) 34.10 406

ConvS2S, beam=1 CPU (48 cores) 33.45 142

ConvS2S: Training

Dataset # Pairs (in million) Hardware Days

WMT14 EN-DE 4.5 1 x GPU (K40) 18

WMT14 EN-FR 36 8 x GPU (K40) 37

ConvS2S: Multi-Hop Attention

1st Layer 2nd Layer

ConvS2S: Multi-Hop Attention

3rd Layer 4th Layer

ConvS2S: Multi-Hop Attention

5th Layer 6th Layer

Blogpost

Research Paper

Source Code

