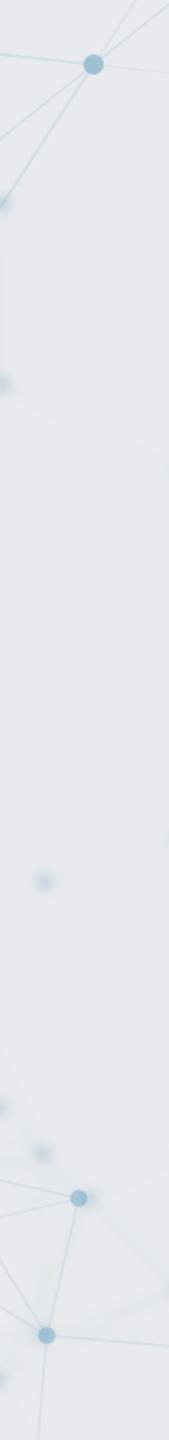
Convolutional Sequence to Sequence Learning **Denis Yarats** with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook Al Research



Sequence generation

Need to model a conditional distribution

$$\Pr(\mathbf{x}) = \prod_{t} \Pr(x_t | x_{1:t-1})$$

Repeatedly predict what will happen next, use your past predictions as if they were real

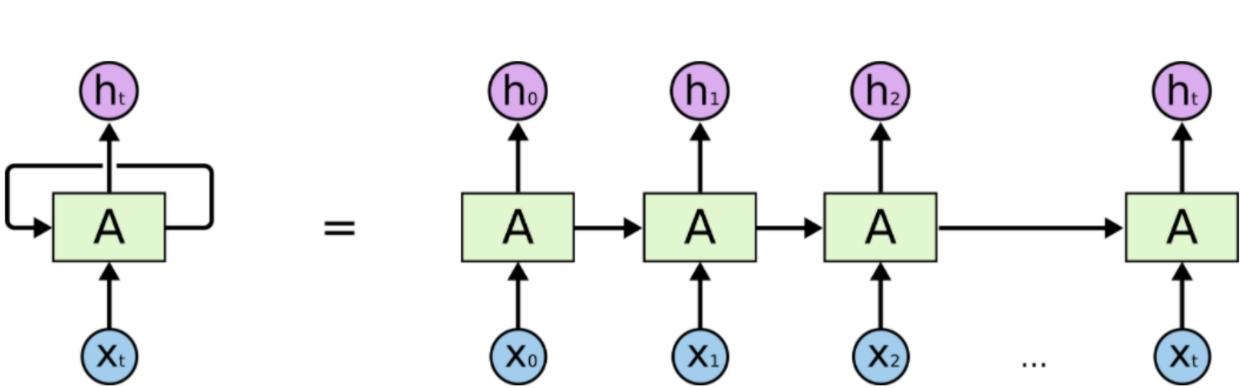
Sequence generation

- Language modeling
- Machine translation
- Speech generating
- Image generation
- etc.

Sequence generation

- How to mode $Pr(\mathbf{x}) = \prod Pr(x_t | x_{1:t-1})$?
- Let's use Recurrent Neural Network

- of past inputs
- They give the network memory



Figures from: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Like feed forward networks, except allows self connections Self connections are used to build an internal representation

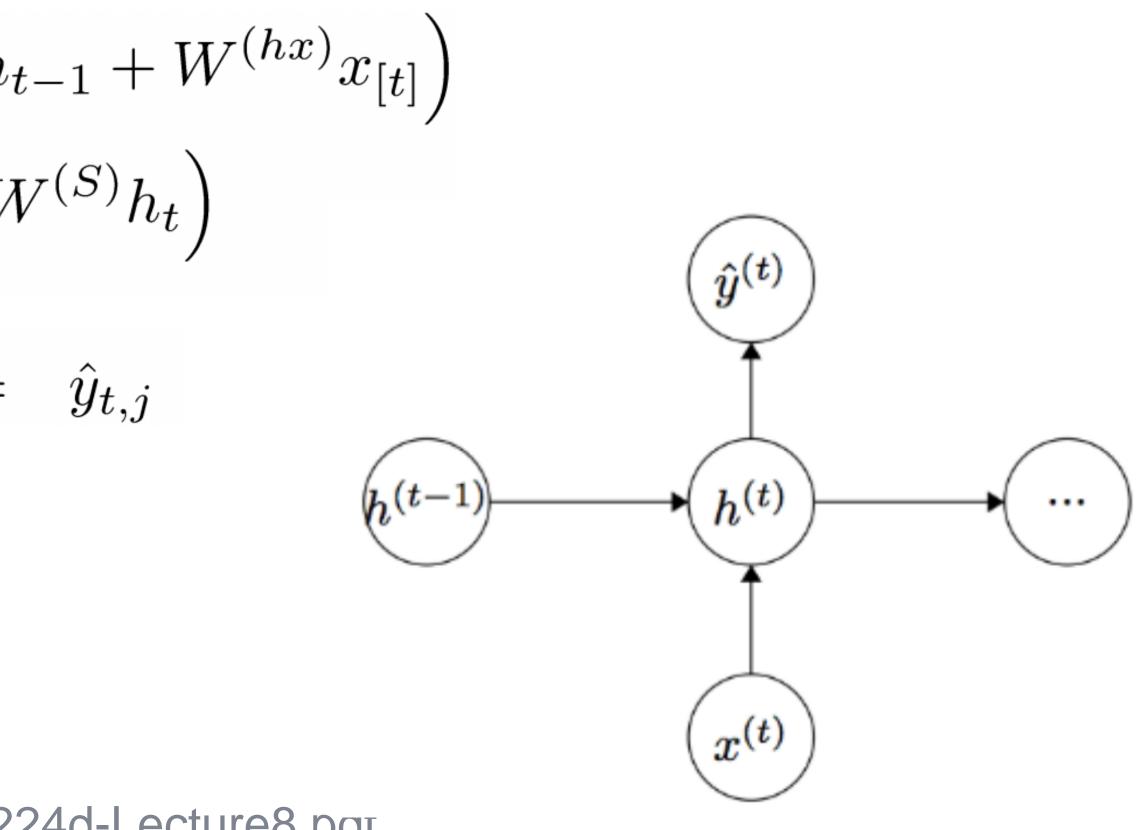
An unrolled recurrent neural network.

- Given list of inputs $x_1, ..., x_{t-1}, x_t, x_{t+1}, ..., x_T$
- At each timestamp do:

$$h_t = \sigma \left(W^{(hh)} h_t \right)$$
$$\hat{y}_t = \operatorname{softmax} \left(W^{(hh)} h_t \right)$$

• Then: $\hat{P}(x_{t+1} = v_j \mid x_t, \dots, x_1) = \hat{y}_{t,j}$

Figures from: http://cs224d.stanford.edu/lectures/CS224d-Lecture8.par

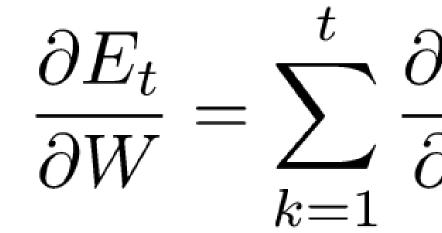


- $\hat{y} \in \mathbb{R}^{|V|}$ is probability distribution over vocabulary
- To train the network, minimize cross-entropy:

|V| $J^{(t)}(\theta) = -\sum y_{t,j} \log \hat{y}_{t,j}$ j=1

Figures from: http://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

The notorious vanishing/exploding gradients problem



where $h_t = Wf$

thus $\frac{\partial h_t}{\partial h_k} =$

Figures from: http://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

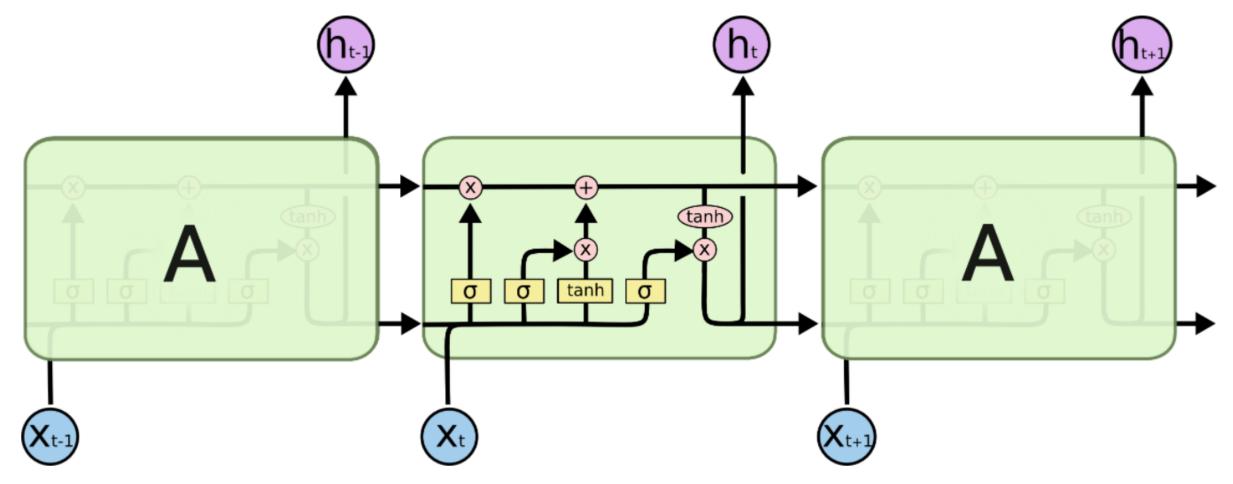
$$\frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

$$(h_{t-1}) + W^{(hx)}x_{[t]}$$

$$\prod_{j=k+1}^{t} \frac{\partial h_j}{\partial h_{j-1}}$$

Long Short Term Memory (LSTM)

- Modification of RNN to have longer memory
- Additional memory cell to store information
- RNN overwrites the hidden state, LSTM adds to the hidden state
- Hochreiter (

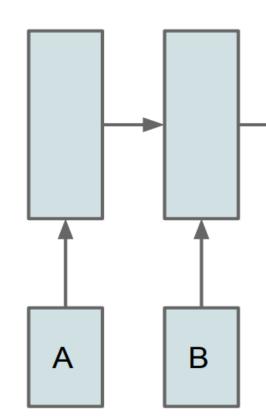


Figures from: http://colah.github.io/posts/2015-08-Understanding-LSTMs

- The repeating module in an LSTM contains four interacting layers.

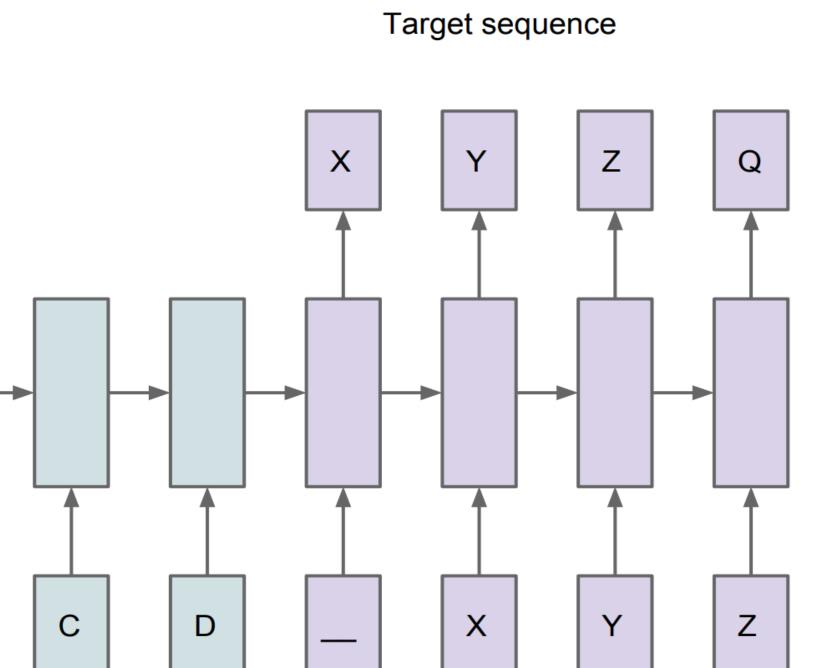
Sequence to Sequence

- Make NN to read one sequence and produce another
- Use 2 LSTMs
- Sutskever et al. 201



Input sequence

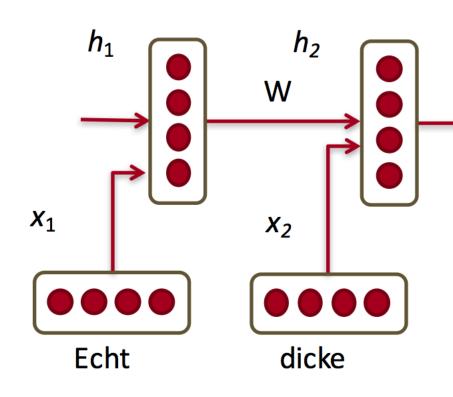
Figures from: http://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/llya_LSTMs_for_Translatior



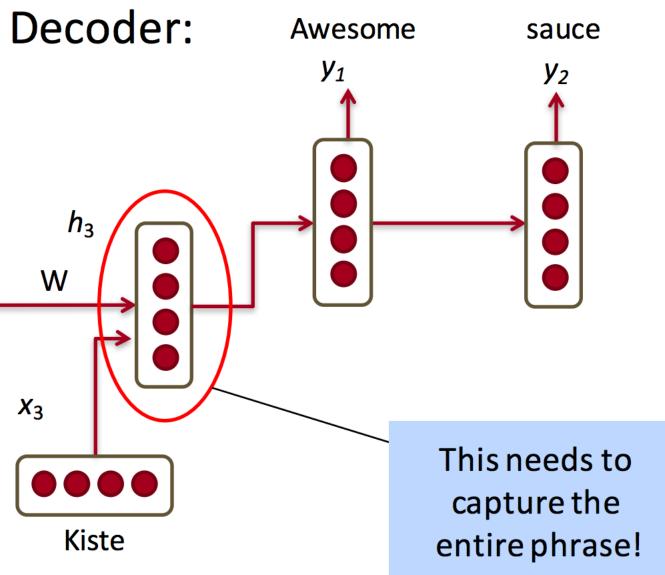
Sequence to Sequence

- Encoder encodes input sequence
- Decoder generates output sequence, conditioning on the input representation

Encoder



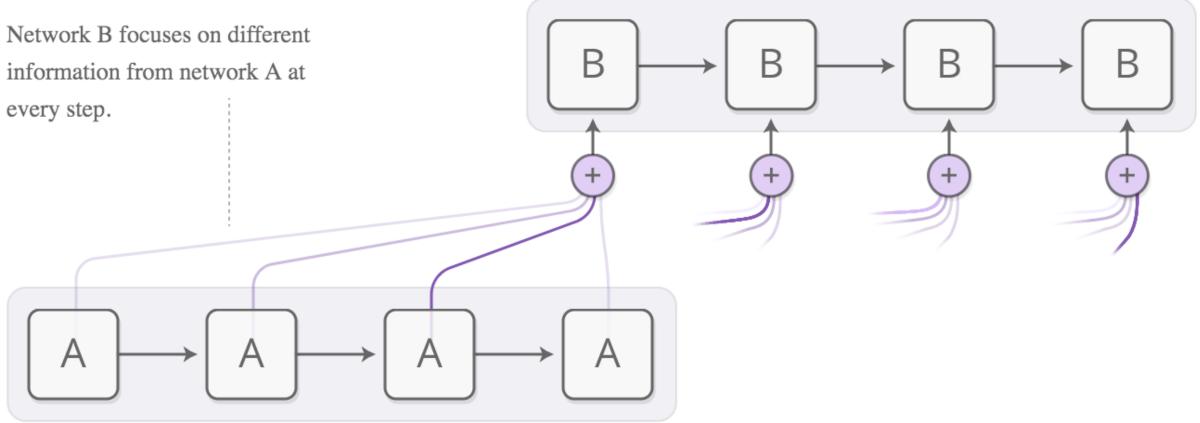
Figures from: http://cs224d.stanford.edu/lectures/CS224d-Lecture9.pdf



Attention

- one
- Bahdahau et al. 2014

information from network A at every step.

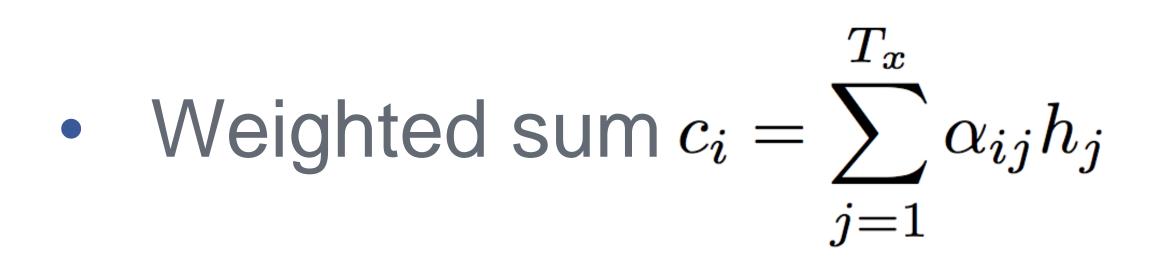


Figures from: https://distill.pub/2016/augmented-rnns

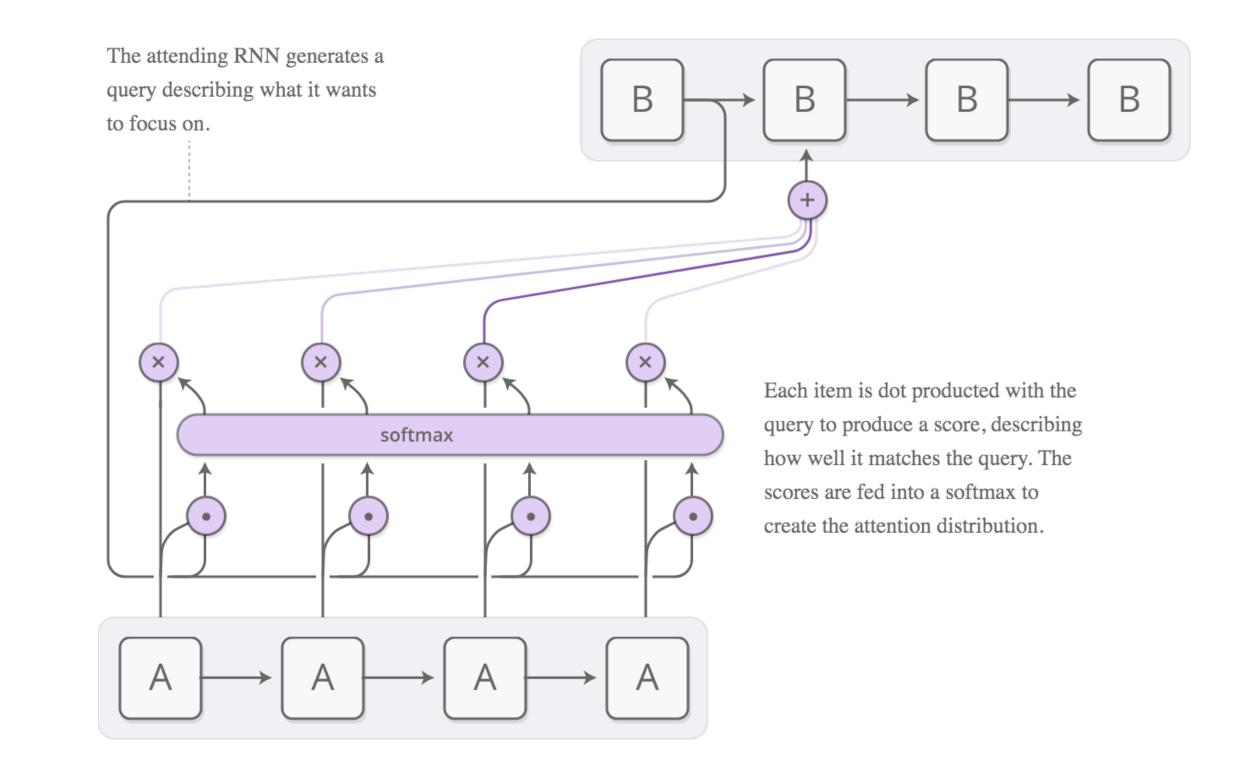
Incorporate all hidden states of encoder, rather than the last

Attention

- Use weighted combination of each encoder hidden state
- Alignment mode $e_{ij} = a(s_{i-1}, h_j)$
- Weights: $\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$

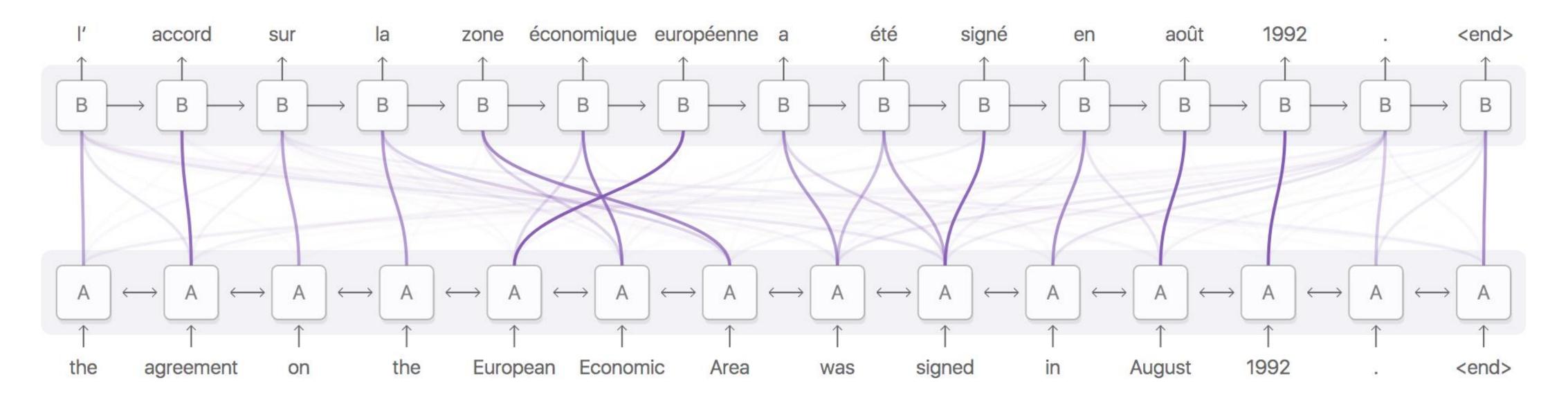


Figures from: https://distill.pub/2016/augmented-rnns



Attention

• Example of attention for machine translation

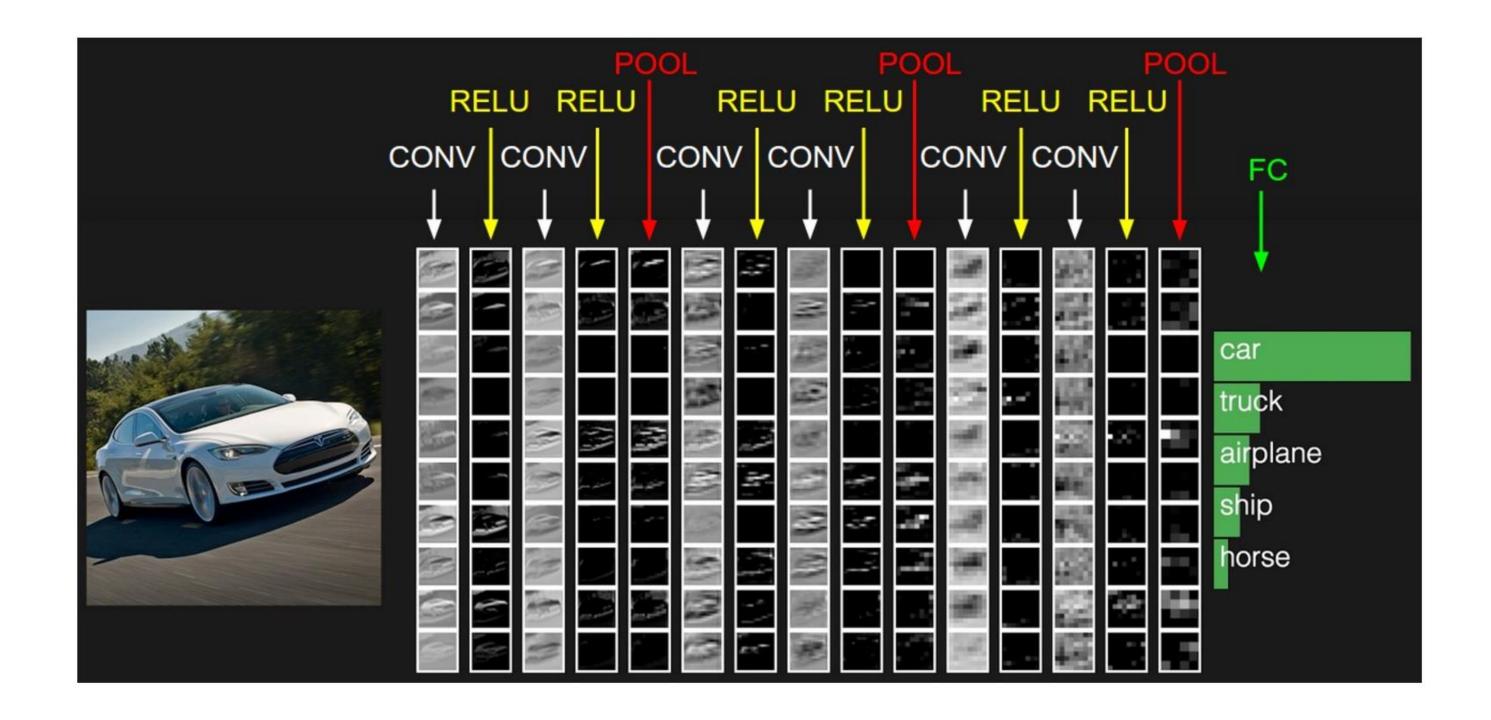


Figures from: https://distill.pub/2016/augmented-rnns

LSTM based Seq2Seq: Problems

- Still challenging to model long term dependencies
- RNNs are hard to parallelize because of non-homogeneous nature
- Convolutional neural networks to the rescue?

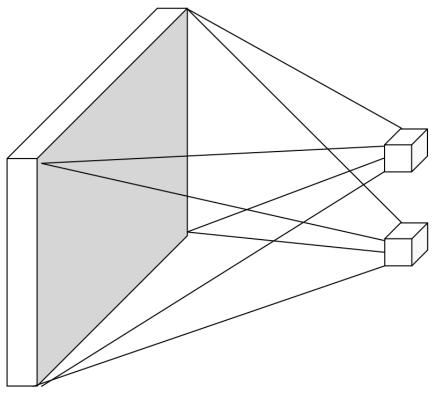
- Efficient implementation on GPU



Figures from: http://cs231n.github.io/convolutional-networks

• Great success in computer vision: AlexNext, VGG, ResNet, ...

- some spatial neighborhood
- input neurons
- Parameter sharing and better scalability



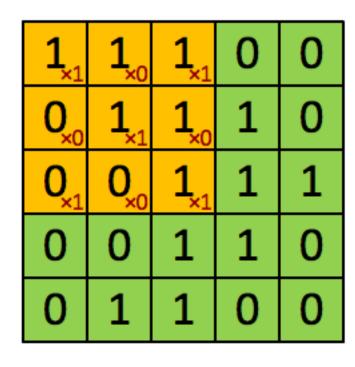
fully connected

convolution

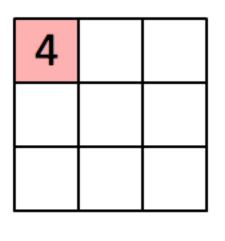
Figures from: http://cs231n.github.io/convolutional-networks

Each output neuron is a linear combination of input neurons in

Unlike a feed forward network, where it is connected to every

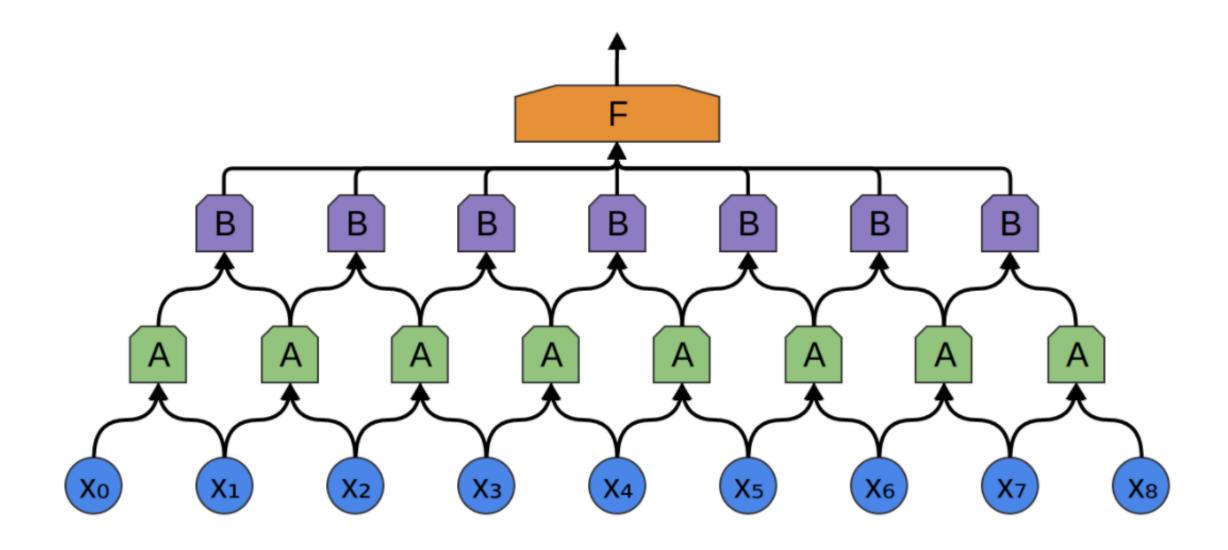


Image



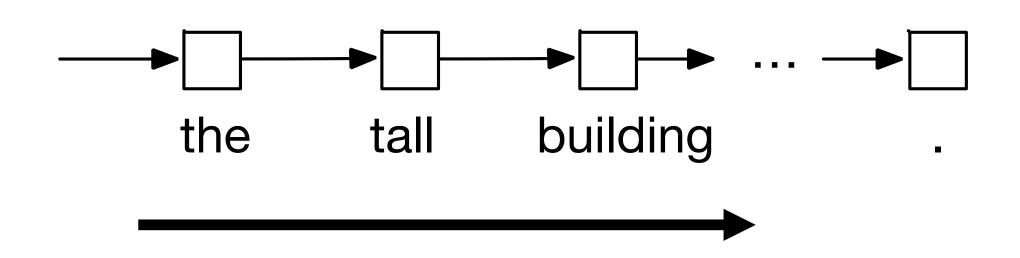
Convolved Feature

- Convolution can also be used for sequences
- Temporal convolution

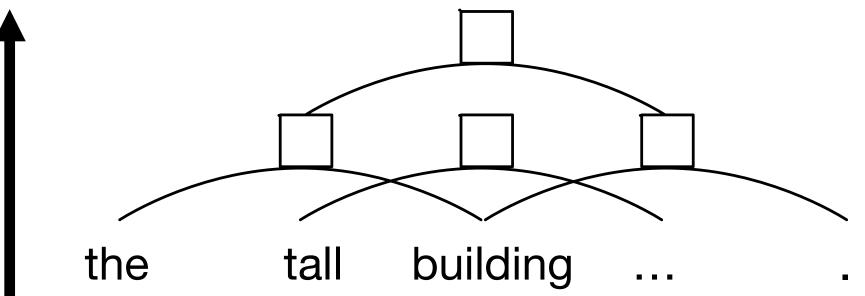


Figures from: http://colah.github.io/posts/2014-07-Conv-Nets-Modular

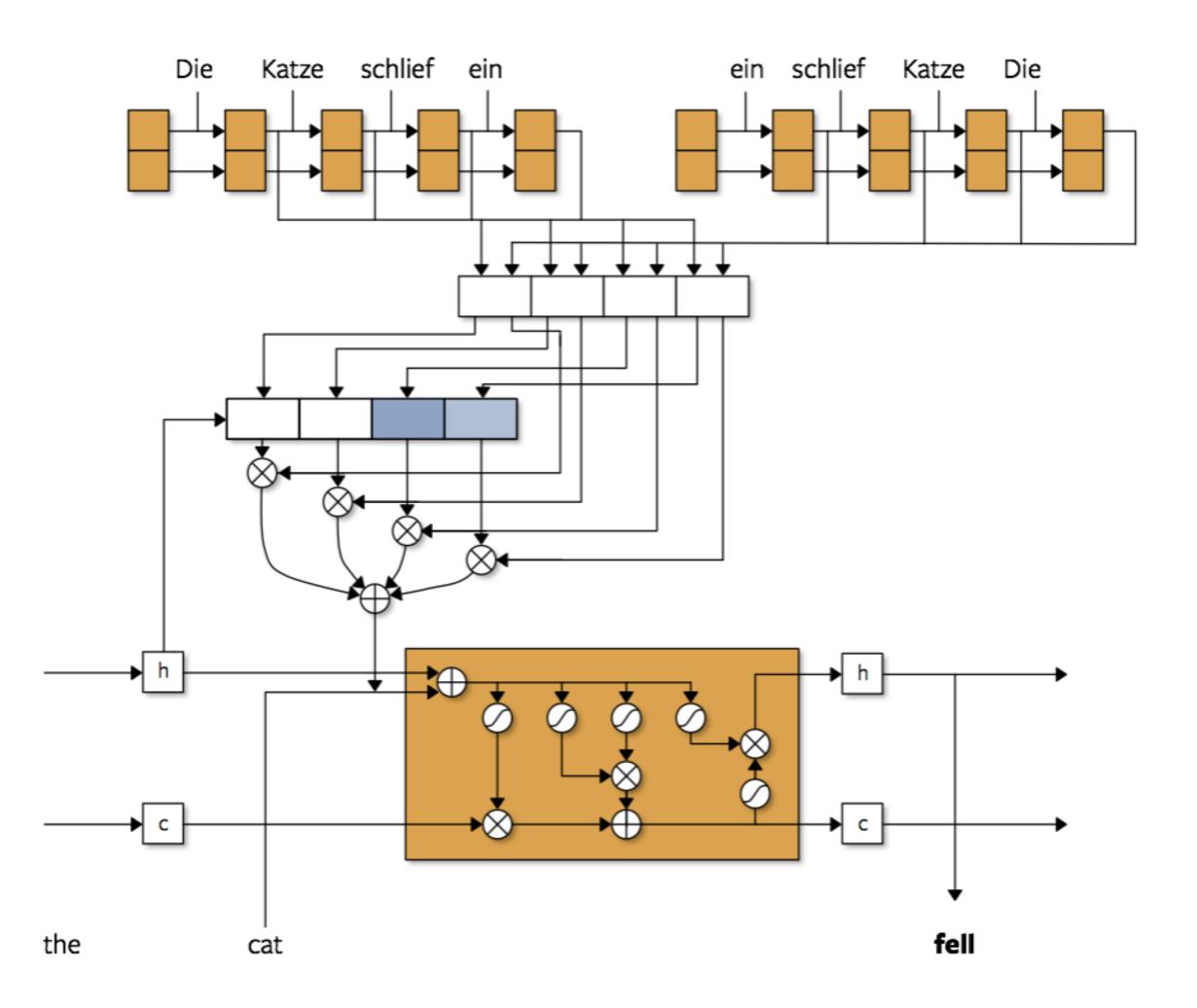
- Hierarchical processing: bottom-up vs. left-right
- Homogeneous: all elements processed in the same way
- Scalable computation: parallelizable, suited for GPUs



om-up vs. left-right processed in the same way elizable, suited for GPUs



ConvS2S: LSTM based Seq2Seq

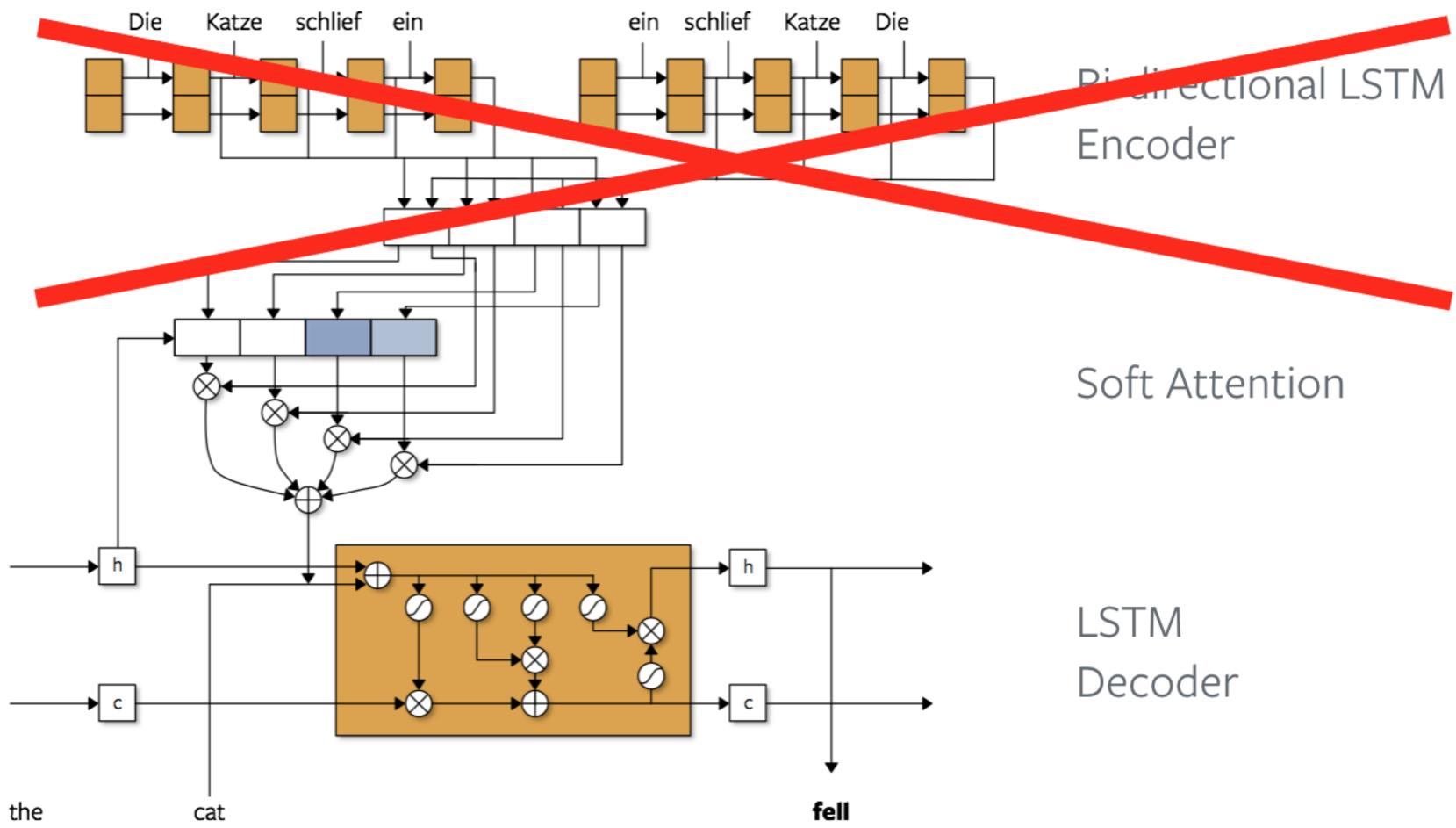


Bi-directional LSTM Encoder

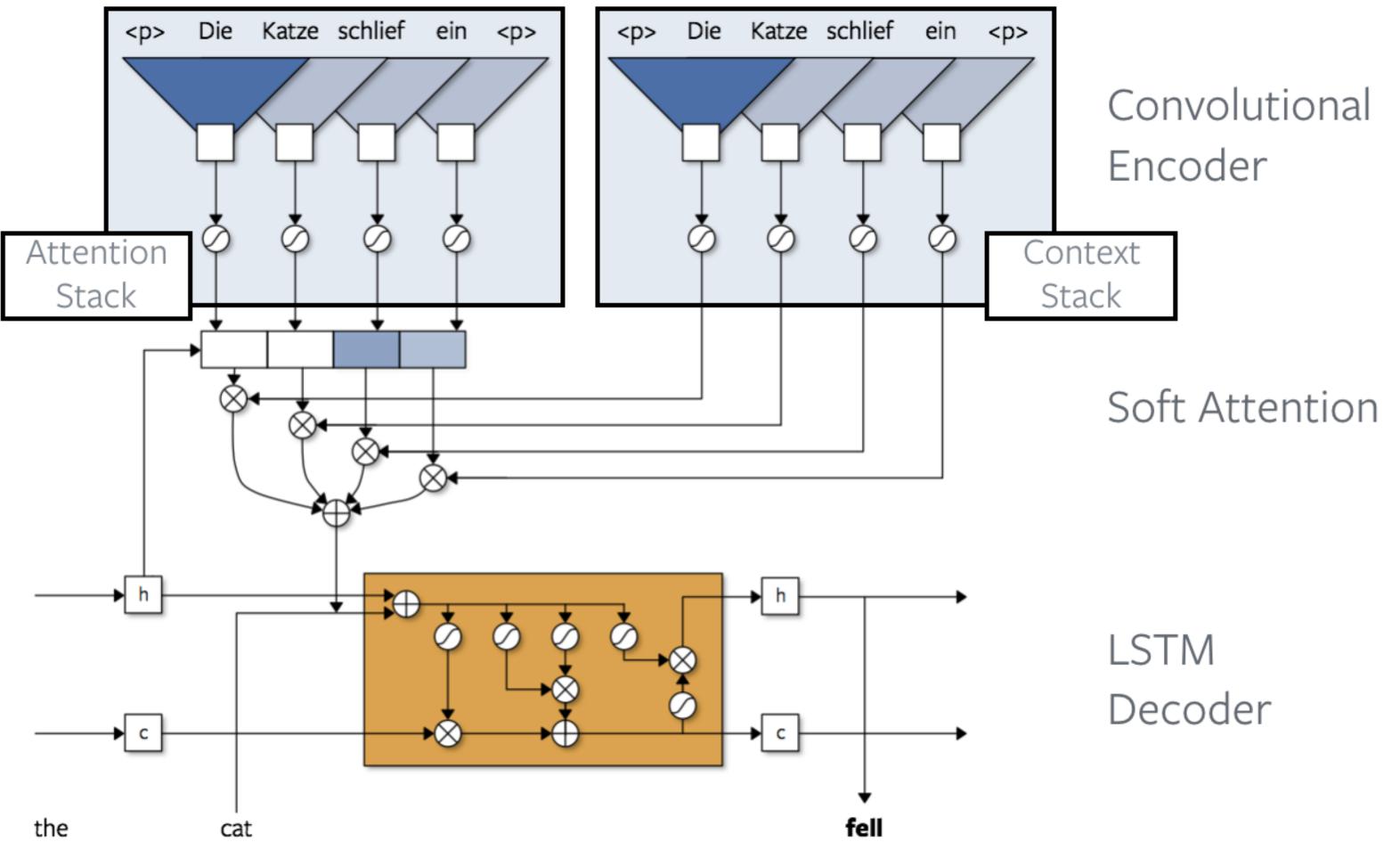
Soft Attention

LSTM Decoder

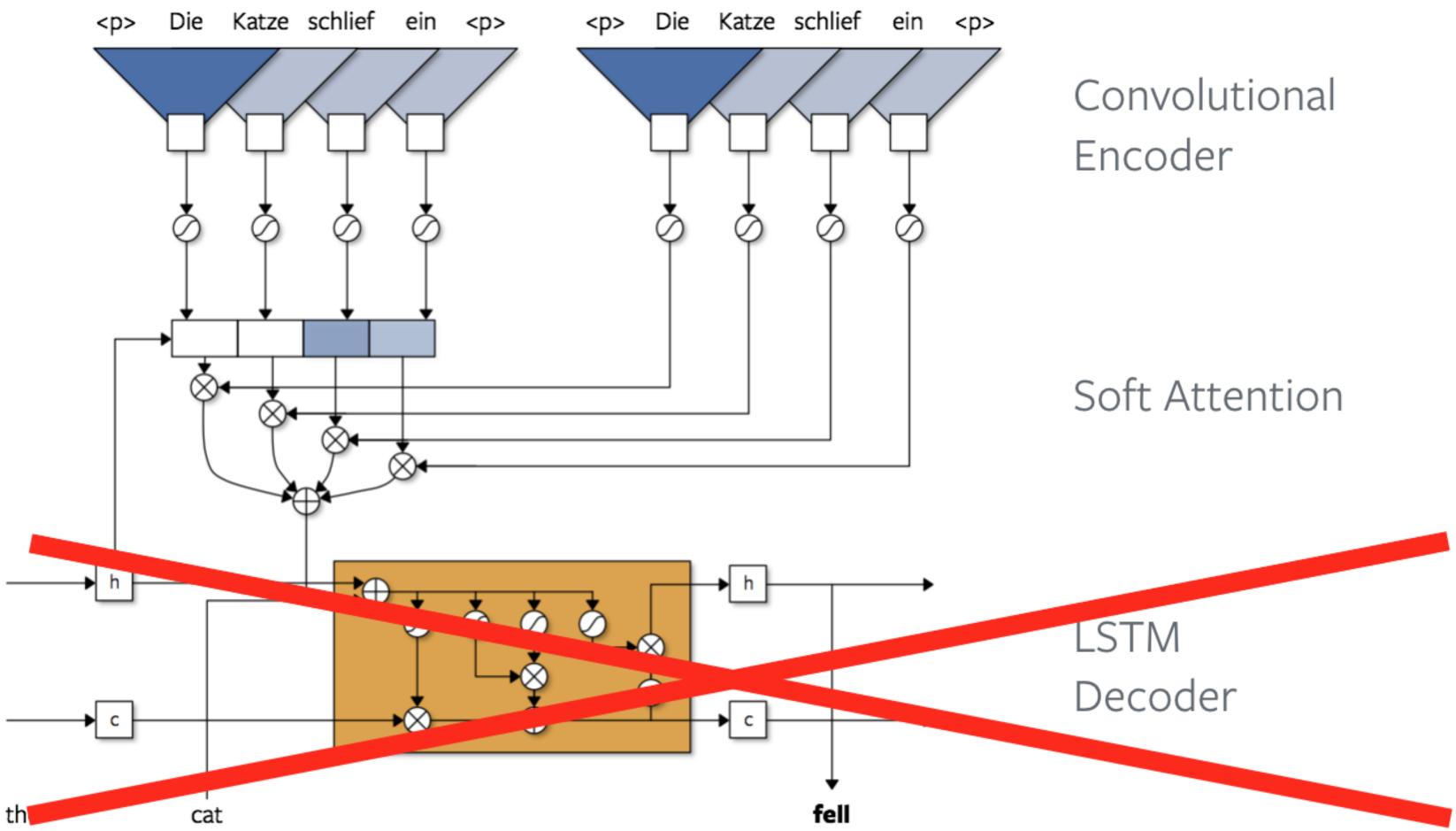
ConvS2S: Convolutional Encoder



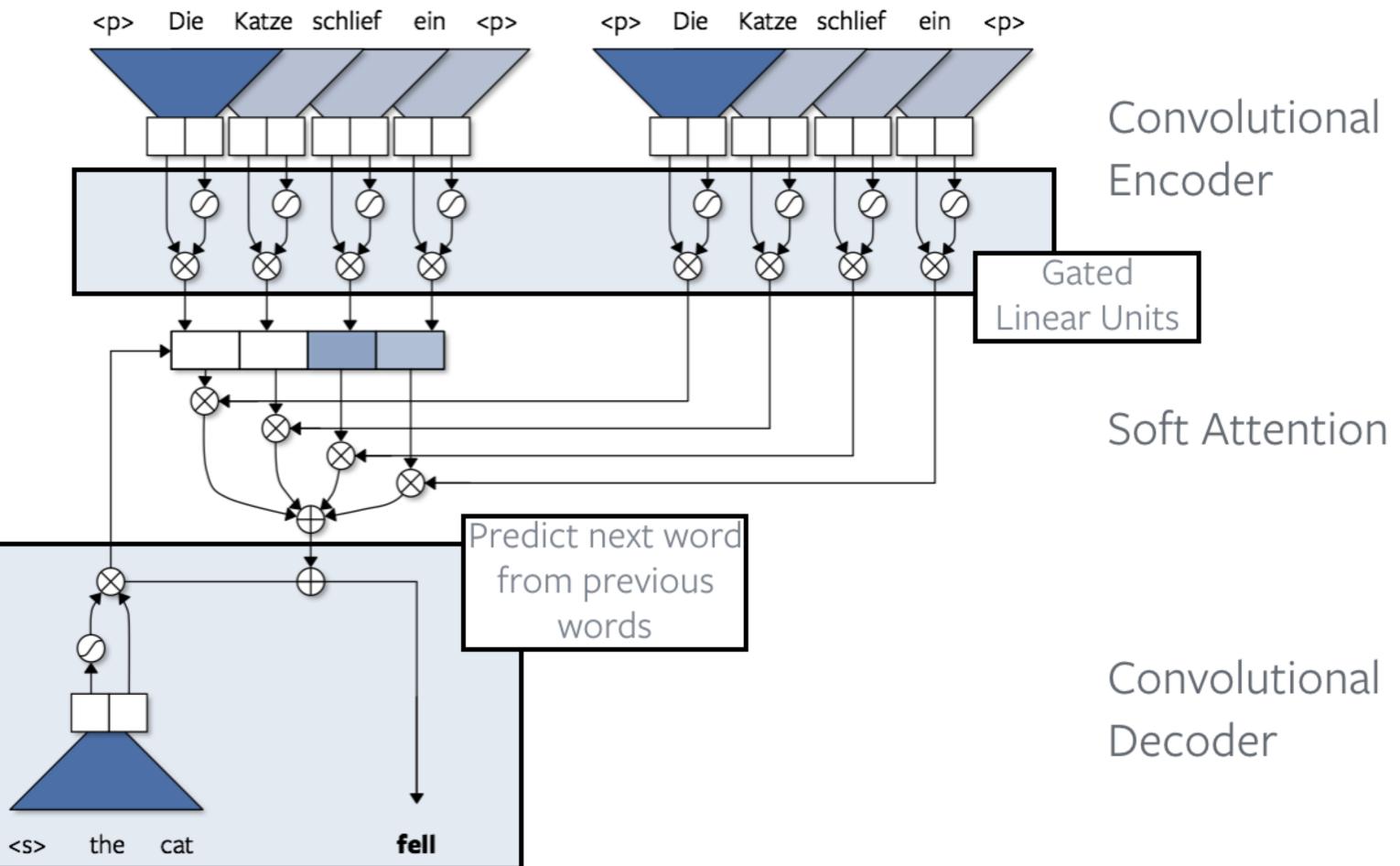
ConvS2S: Convolutional Encoder



ConvS2S: Convolutional Decoder



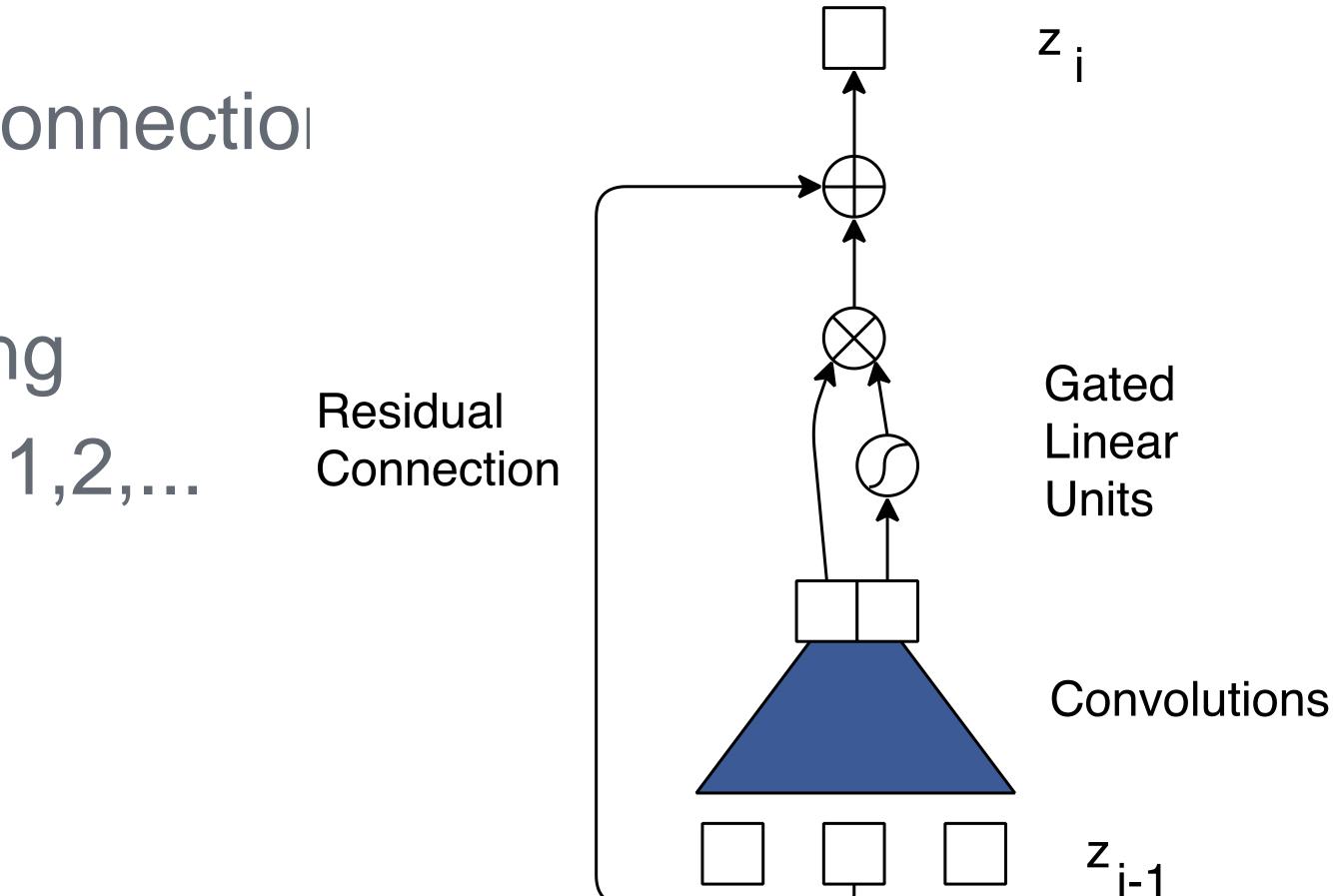
ConvS2S: Convolutional Decoder



ConvS2S: Encoder

Convolutional block structure for encoder:

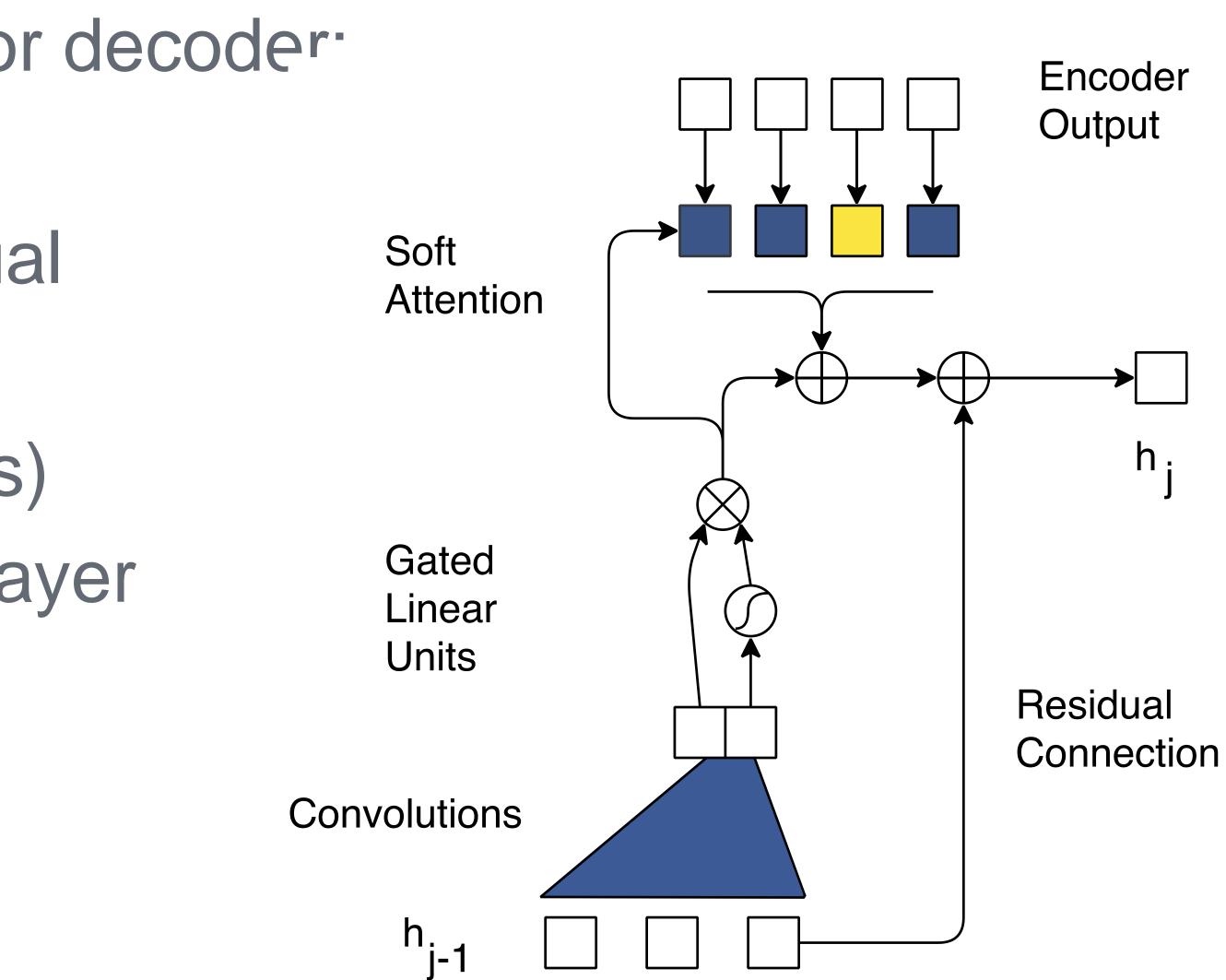
- Gated linear units, residual connectio
- $z_0 = embeddings$
 - word or sub-word embedding
 - plus position embedding: 0,1,2,...



ConvS2S: Decoder

Convolutional block structure for decoder

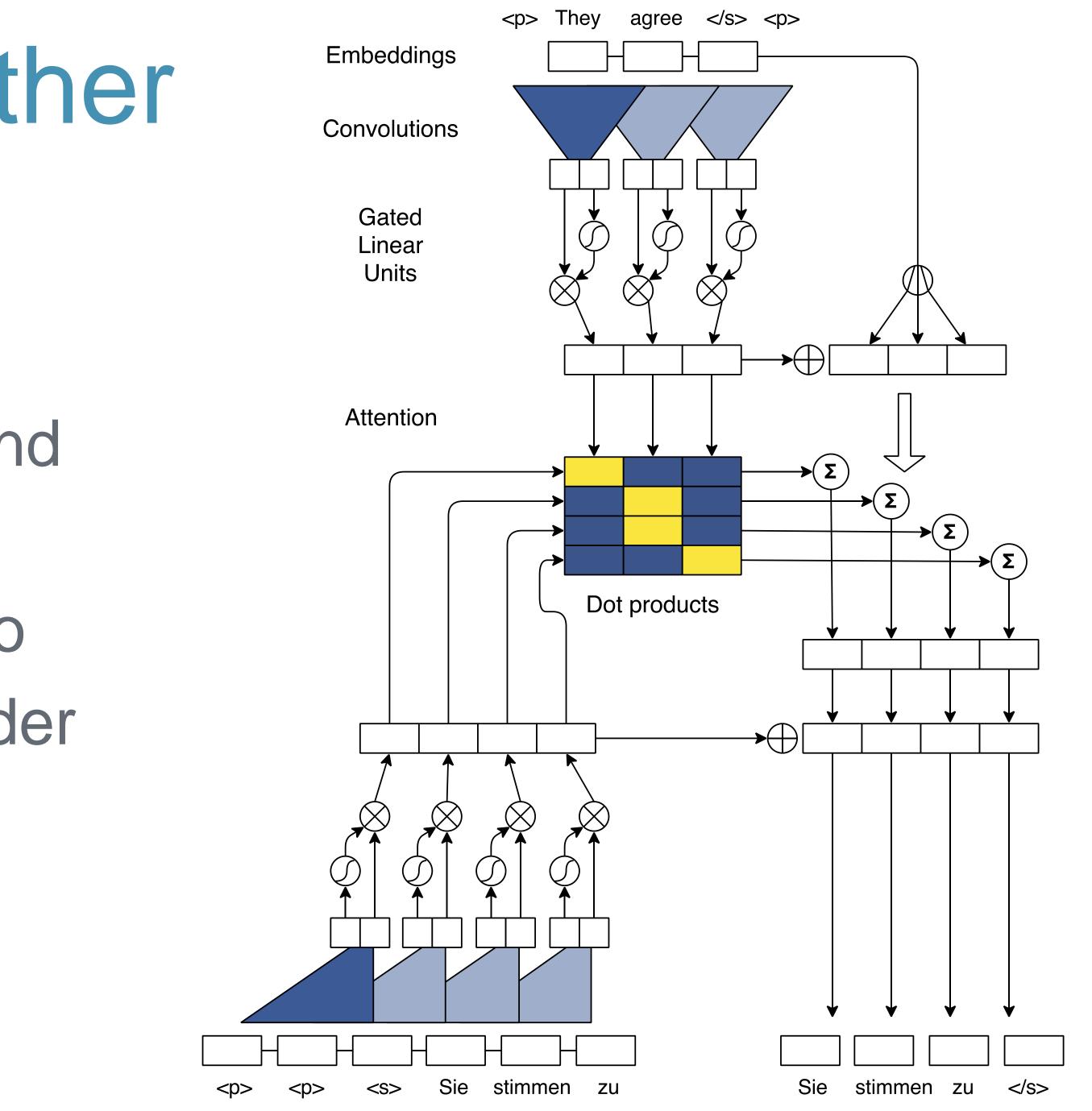
- Gated linear units and residual connections
- $h_0 = embeddings (word + pos)$
- Soft attention pass at every layer



ConvS2S: All together

Putting it all together:

- Here: single-layer encoder and decoder
- High training efficiency due to parallel computation in decoder



ConvS2S: Architecture

- 15 layers in both encoder and decoder
- Convolutional kernel size is 3
- Hidden size gradually increases from 512 to 4096
- Embedding size is 512

ConvS2S: Training

- Optimizer: Nesterov with momentum
- Learning rate 0.25, momentum 0.99
- Gradient clipping if norm exceeds 0.1
- Batch size 64
- Data parallel training: all-reduct gradients after each iteration Model is implemented in Torch (PyTorch implementation is
- coming)

ConvS2S: Tricks

- WeighNorm (Salimans et al. 2016)
- Dropout (Srivastava et. al. 2014)
- Scale outputs of each layer to normalize variance
- Careful weight initialization to ensure normally distributed variance

ConvS2S: Results

Results on English-German (WMT'14, newstest2014)

System

ByteNet v2 (Kalchbrenner et al., 2

GNMT (Wu et al., 2016)

GNMT (Wu et al., 2016)

ConvS2S

Transformer (Vaswani et al., 20

	Vocabulary	BLEU
2016)	Characters	23.75
	Word 80k	23.12
	Word pieces	24.61
	BPE 40k	25.16
017)	Word pieces	28.4*

ConvS2S: Results

Results on English-French (WMT'14, newstest2014)

System

GNMT (Wu et al., 2016)

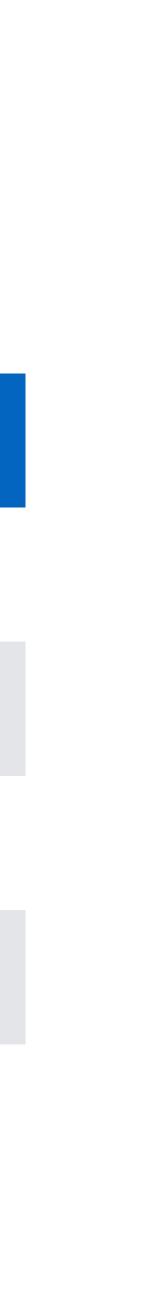
GNMT (Wu et al., 2016)

GNMT + RL (Wu et al., 2016)

ConvS2S

Transformer (Vaswani et al., 2017

	Vocabulary	BLEU
	Word 80k	37.90
	Word pieces	38.95
	Word pieces	39.92
	BPE 40k	40.46
7)	Word pieces	41.0 *



ConvS2S: Speed

Translation speed on English-French (WMT'14, dev set)

System

GNMT (Wu et al., 2016)

GNMT (Wu et al., 2016)

GNMT + RL (Wu et al., 2016)

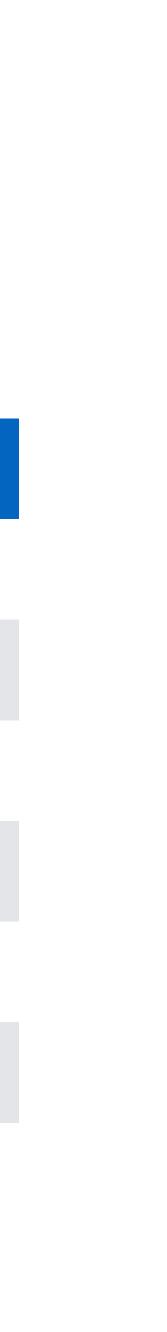
ConvS2S, beam=5

ConvS2S, beam=5

ConvS2S, beam=5

ConvS2S, beam=1

Hardware	BLEU	Time (s)
CPU (88 cores)	31.20	1322
GPU (K80)	31.20	3028
TPU	31.21	384
CPU (48 cores)	34.10	482
GPU (K40)	34.10	587
GPU (GTX-1080ti)	34.10	406
CPU (48 cores)	33.45	142



ConvS2S: Training

Pairs (in million)

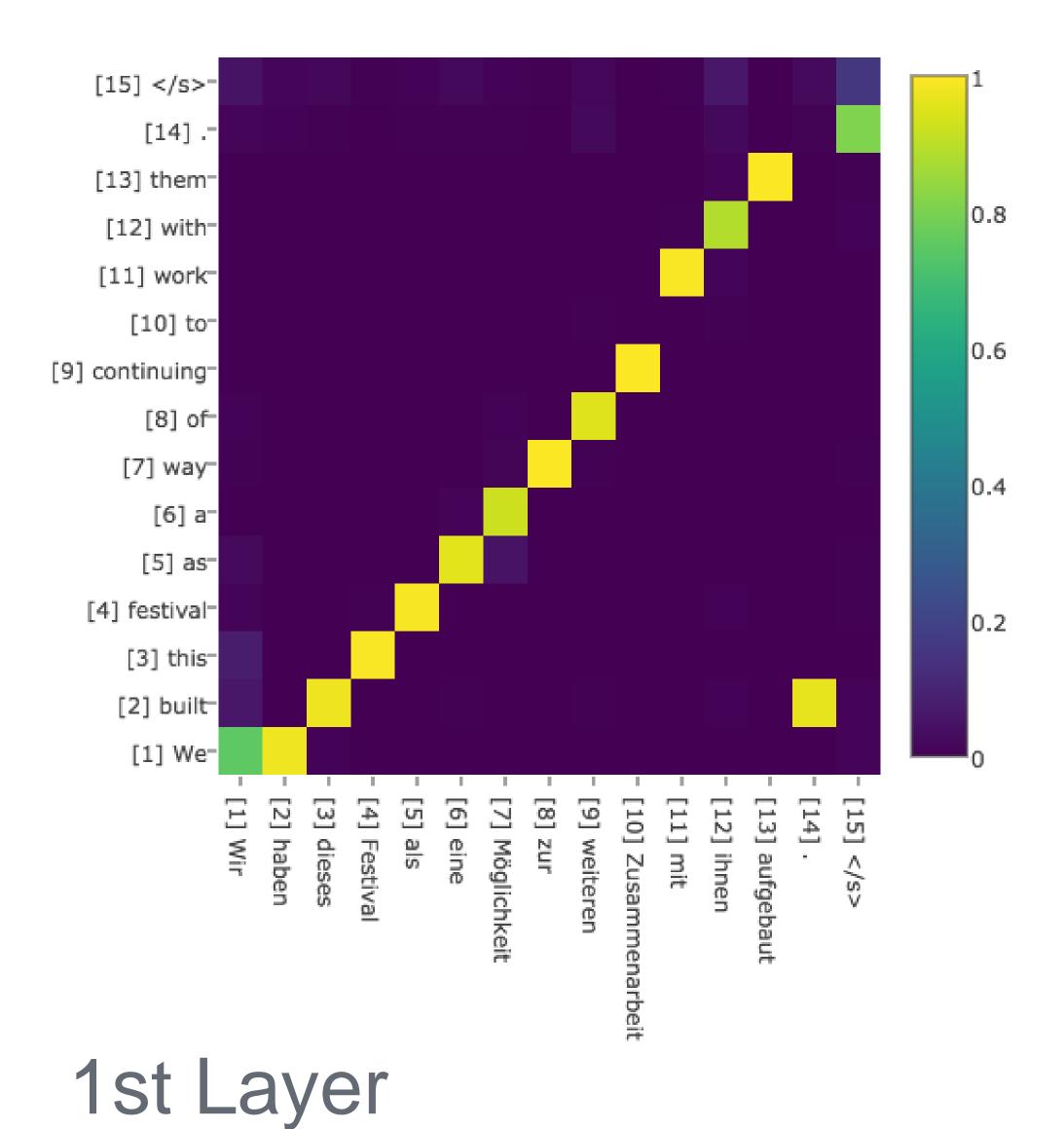
WMT14 EN-FR

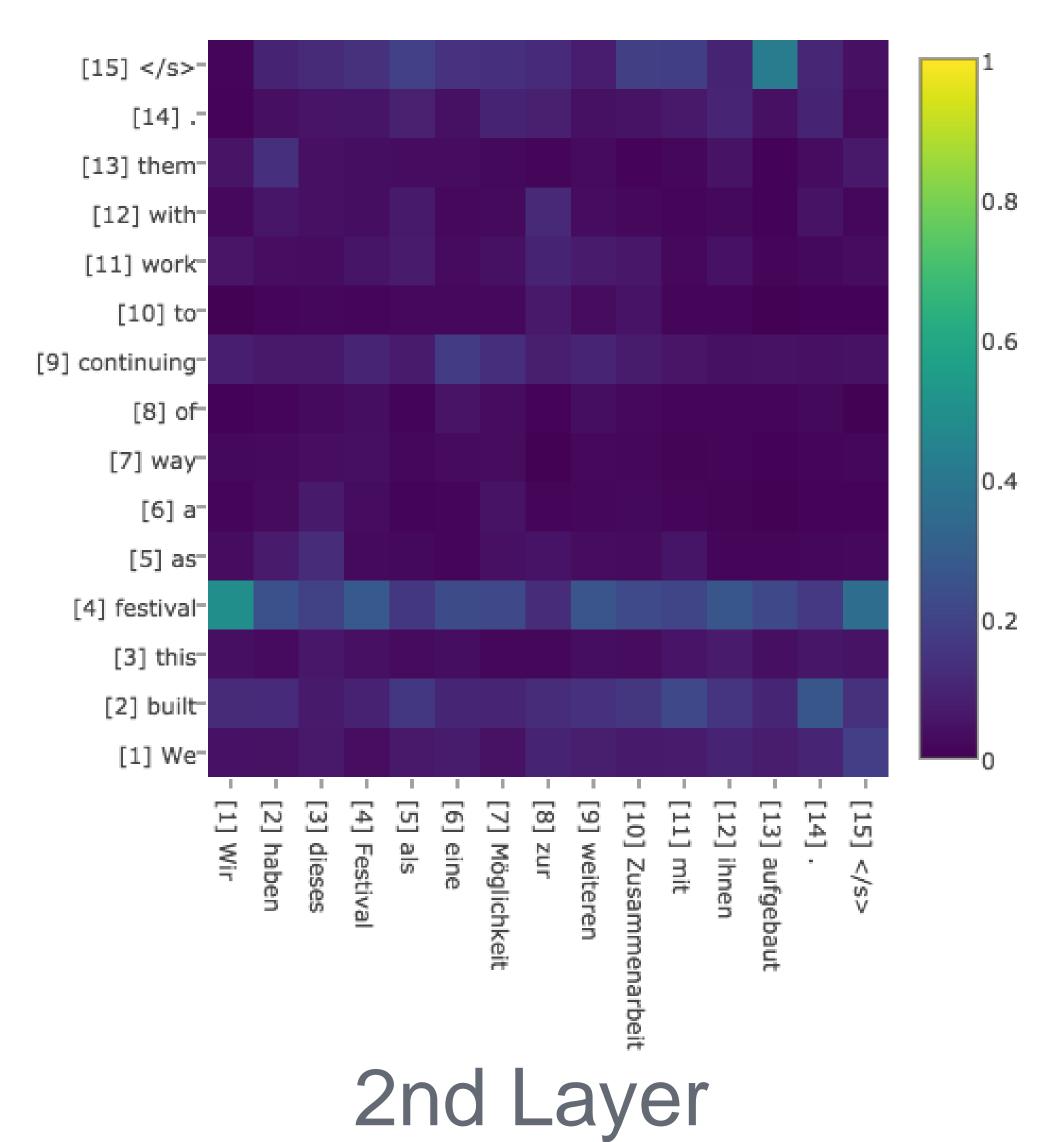
36

1 x GPU (K40) 18

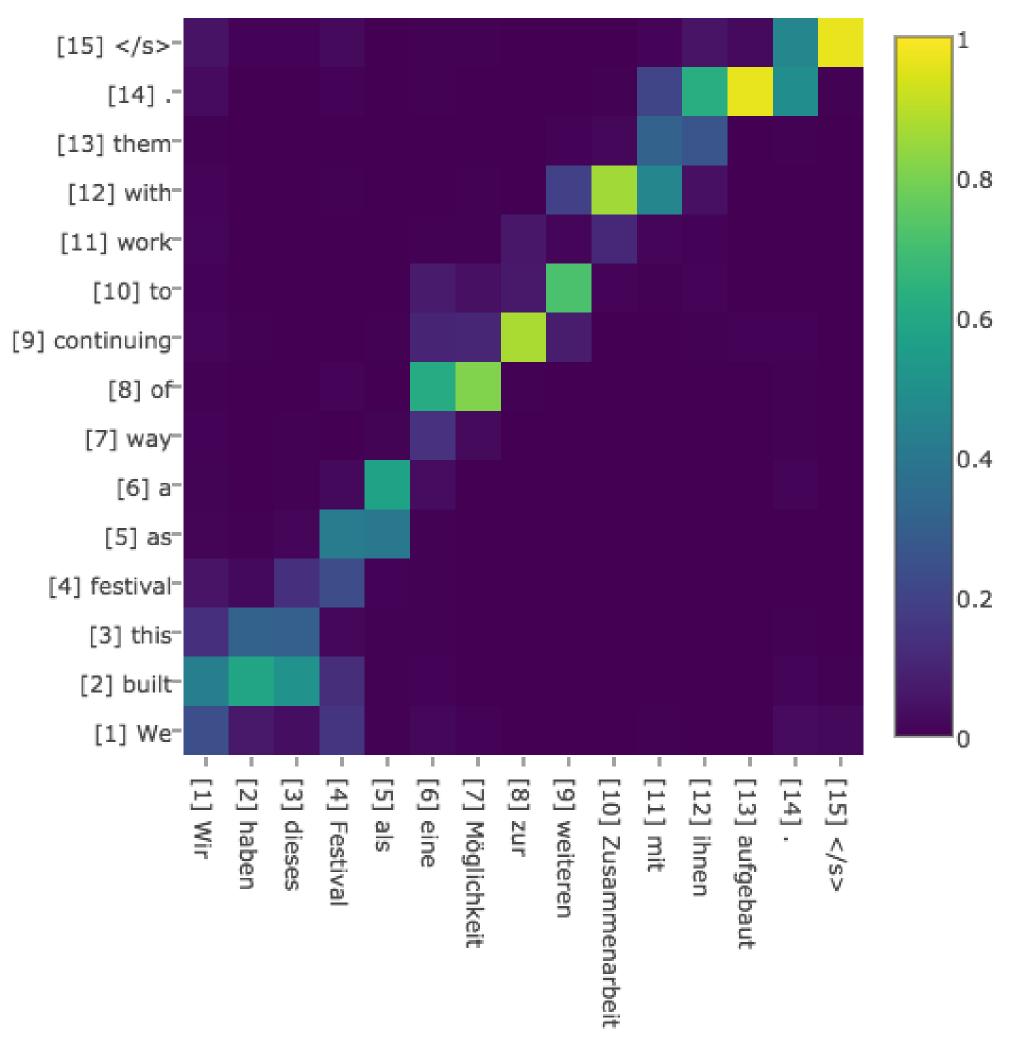
8 x GPU (K40) 37

ConvS2S: Multi-Hop Attention

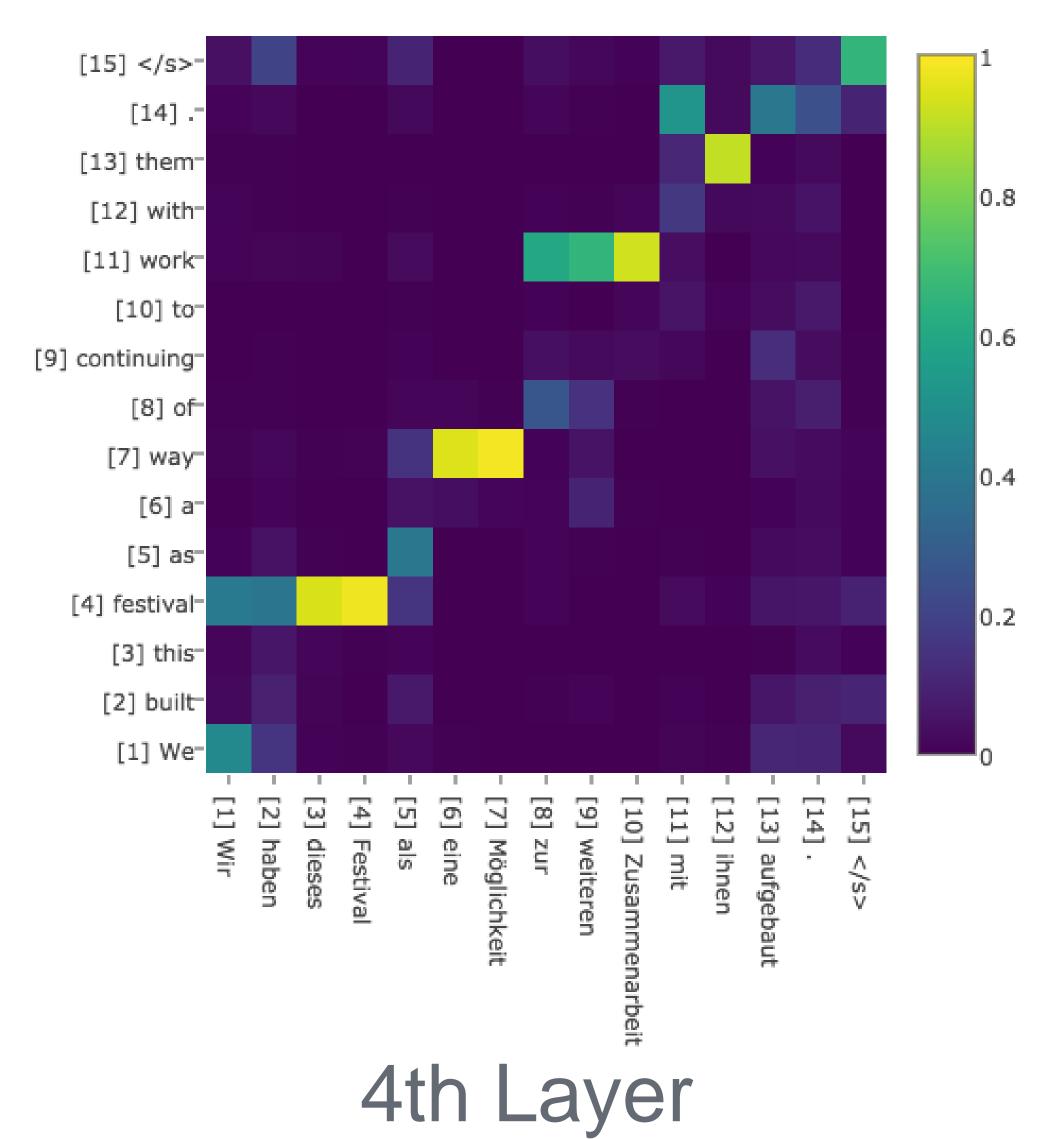




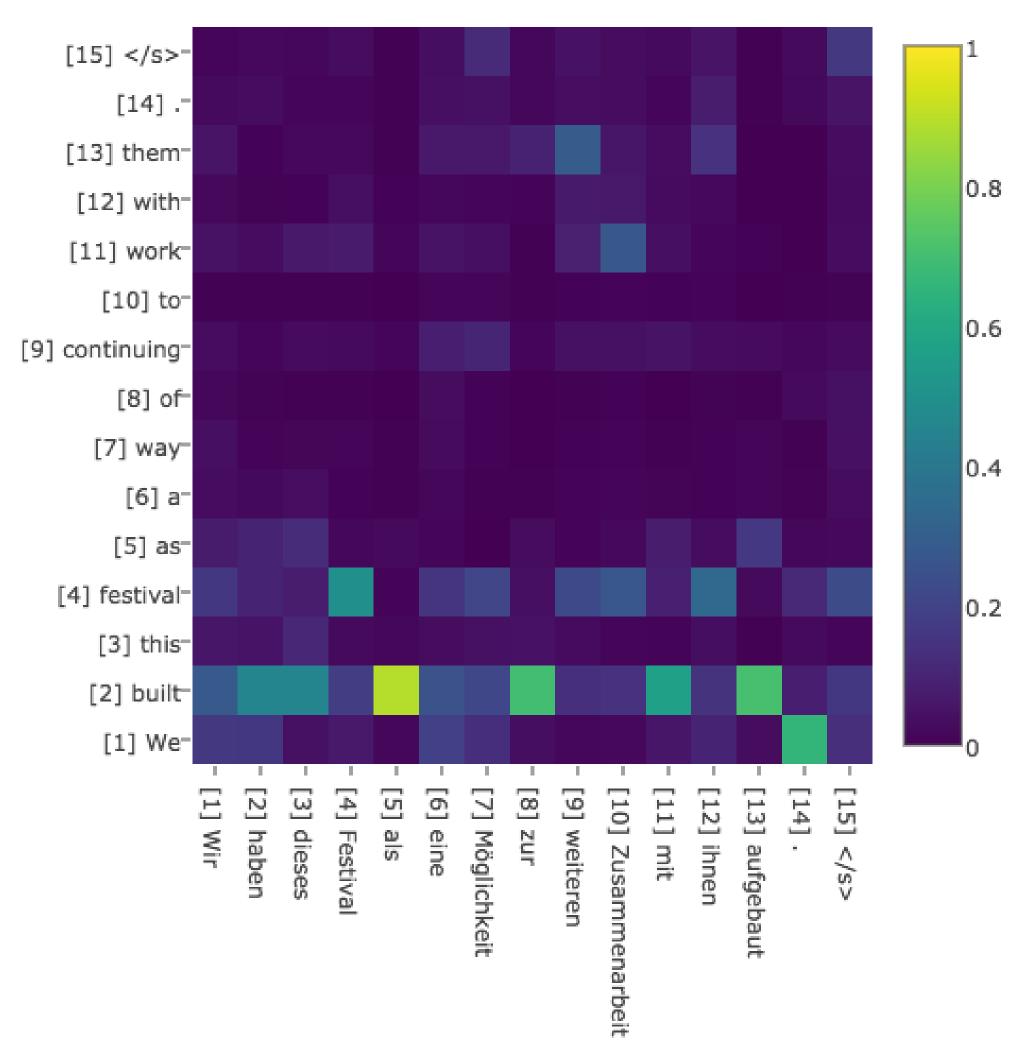
ConvS2S: Multi-Hop Attention



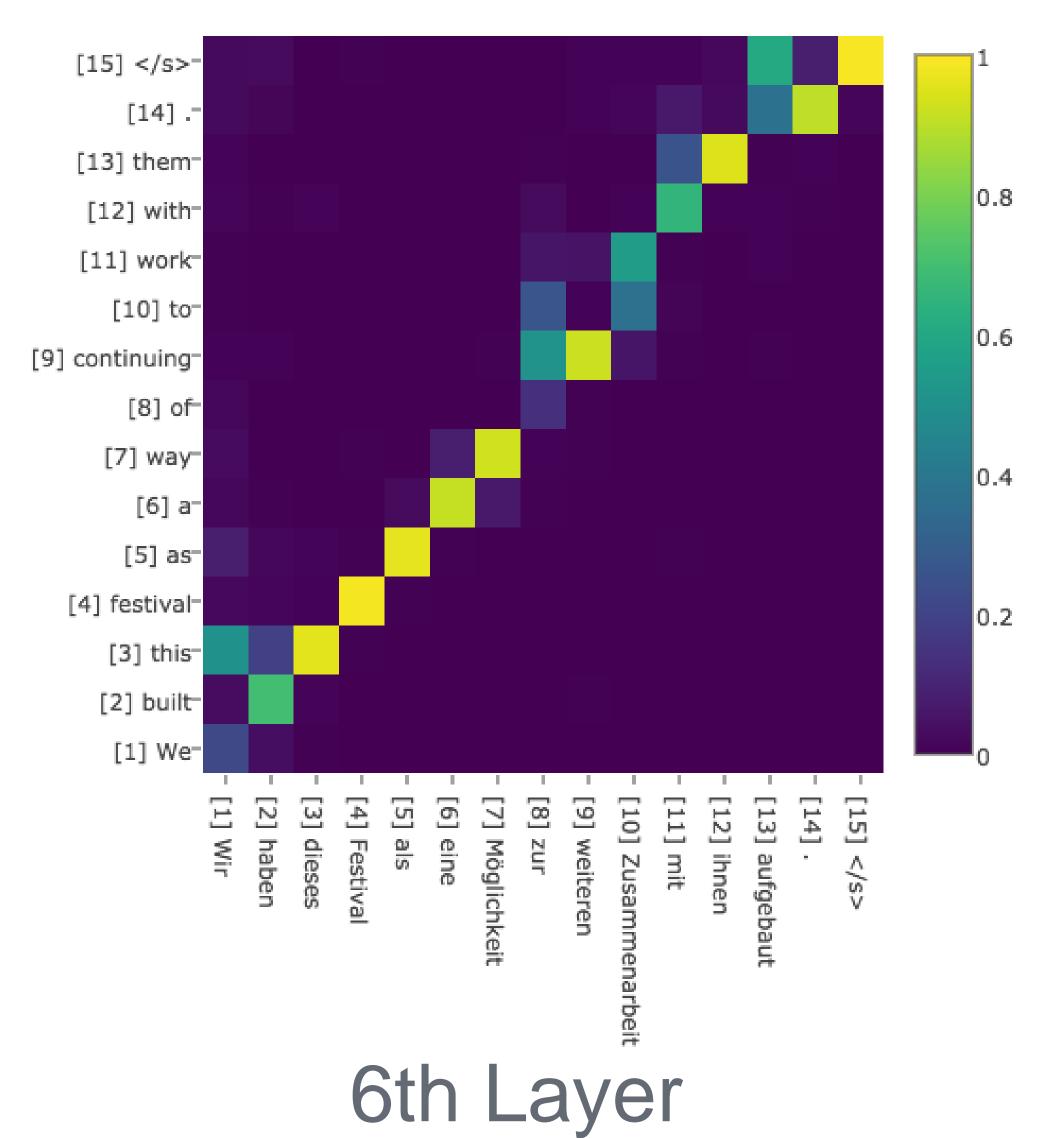
3rd Layer



ConvS2S: Multi-Hop Attention



5th Layer



Blogpost

⊙ May 9 S ARTIFICIAL INTELLIGENCE · RESEARCH

A novel approach to neural machine translation

Jonas Gehring Nichael Auli David Grangier Denis Yarats 2 Yann N. Dauphin

Research Paper

arXiv.org > cs > arXiv:1705.03122

Computer Science > Computation and Language

Convolutional Sequence to Sequence Learning

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, Yann N. Dauphin

(Submitted on 8 May 2017 (v1), last revised 25 Jul 2017 (this version, v3))

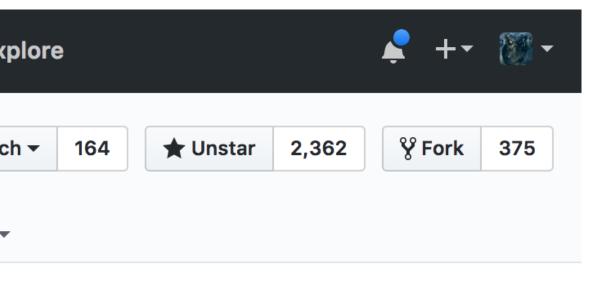
The prevalent approach to sequence to sequence learning maps an input sequence to a variable length output sequence via recurrent neural networks. We introduce an architecture based entirely on convolutional neural networks. Compared to recurrent models, computations over all elements can be fully parallelized during training and optimization is easier since the number of non-linearities is fixed and independent of the input length. Our use of gated linear units eases gradient propagation and we equip each decoder layer with a separate attention module. We outperform the accuracy of the deep LSTM setup of Wu et al. (2016) on both WMT'14 English-German and WMT'14 English-French translation at an order of magnitude faster speed, both on GPU and CPU.

Search or Article ID inside arXiv	All papers	~ Q	Broaden
<u>Help</u> <u>Advanced search</u>)			

Source Code

Ç	This	repository	Search		Pull requests	Issues	Market	tplace	Ex
	faceboo	kreseard	ch / fairsec	I				⊙ Unv	wato
<	<> Code	() Issues	s 27 🕅 P	ull requests 0	Projects	0	Wiki	Insigh	nts 🗸
Fac	cebook A	Al Researc	h Sequence	e-to-Sequenc	e Toolkit				
	Ē 19	commits		ဖို ၊ branch	S	• 0 releas	es		11

Branch: master - New pull request Create new file



8 con	tributors	rs മ് BSD-3-Clause		
file	Upload files	Find file	Clone or download -	

