Wrike

Lessons learned: Job Titles **Classification & Deep-Learning**

2017-09-24

ALEKSEI PUPYSHEV

R&D Team Lead at Wrike Inc.

Main idea

- It's easy to start without having PhD in math
- It's bringing us to development of flexible and scalable solution for data processing
- It's bringing us to IR for complex data and big data democratization

Structure: business case of Job Titles Classification

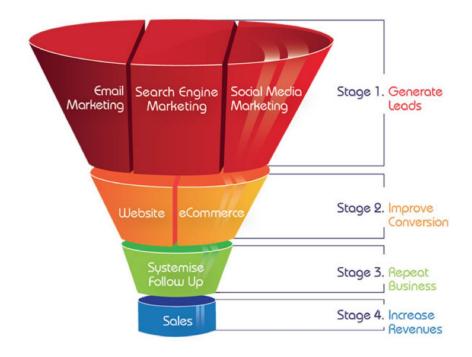
- Why we need a segmentation?
- What data do we have? Why it isn't a good data format for BI?
- Clusterization vs Topic Distribution models
- Why heuristic approaches are good for start only? Maintenance issues
- **Deep learning** approach
- **Alternatives**

Why we need a segmentation?

- Wrike: Leading Work Management & Project Management Solution
- Wrike Customer: isn't a single person & not an entire organization
- Wrike <u>Customer</u> can be a single person (lead), or team, or department, or even a group of departments within one organization for different time stage in Wrike account

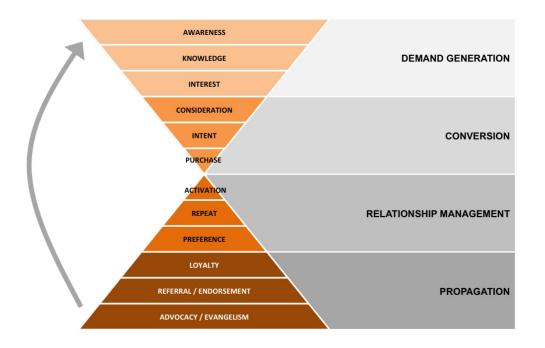
Why we need a segmentation?

Classical funnel

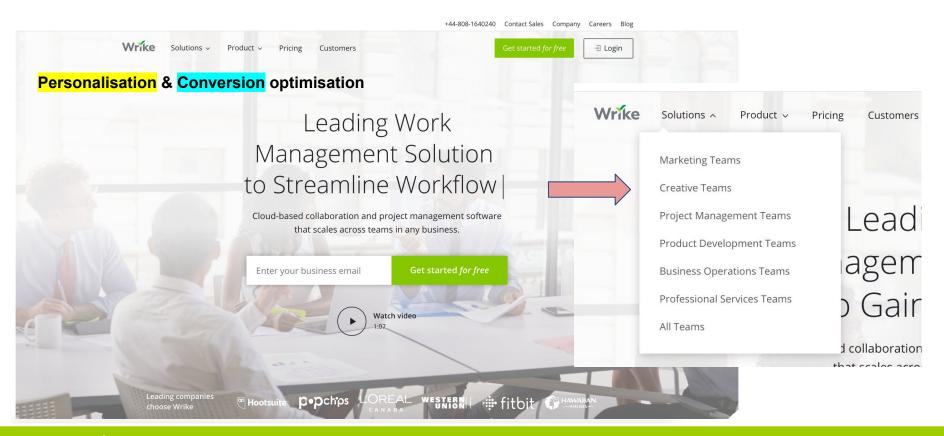


Why we need a segmentation?

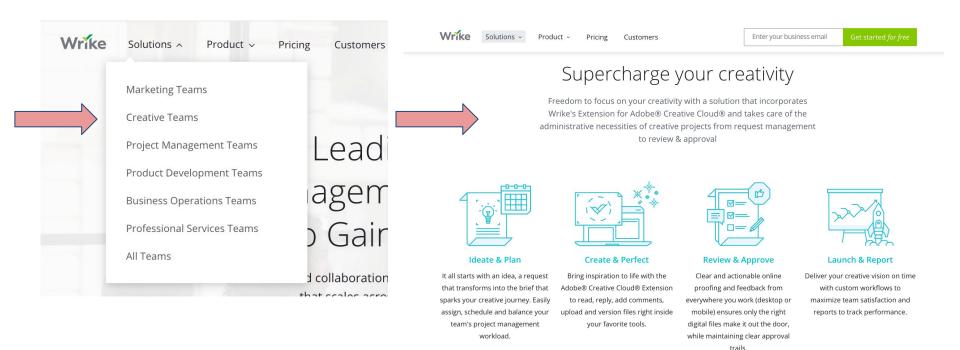
B2B SaaS funnel



Why do we need a segmentation?



Why do we need a segmentation?



https://www.wrike.com/creative-project-management/

Segmentation of: visitors, trials, teams, departments, companies, users etc

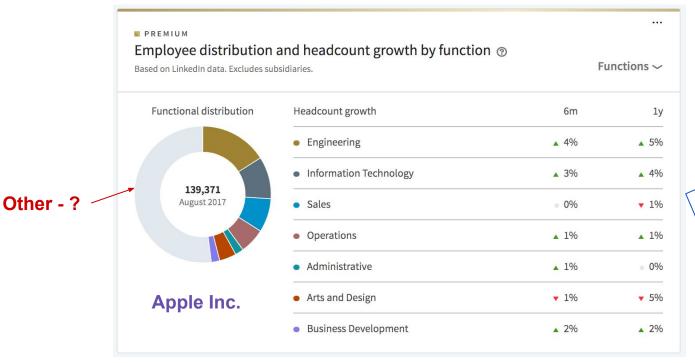
Segmentation based on factors

Company Size Industry* Country* Channel Segmentation based on behaviour Retention Sessions **Target Actions** Metrics per Account

Segmentation of: visitors, trials, teams, departments, companies, users etc

Segmentation based on factors

Company Size Industry* Country* Channel Segmentation based on behaviour Retention Sessions **Target Actions** Metrics per Account Segmentation based on text data **Bought datasets** CRM data Web Mined data Free-Text forms calls / emails etc



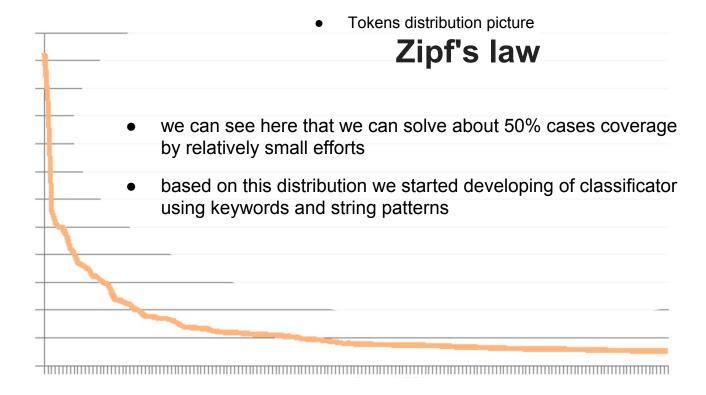
	Administrative Assistant to John MacMillan	
SEO, UI/UX, Mktg Ops	Designer	
President	Vice President, Marketing	
Marketing Assistant	Communication and Change Manager, West Gulf Coast Region	
VP of Design	Senior Manager, Marketing Promotions	
Traffic Coordinator	Customer Marketing Manager	
Lead Graphic Designer	Queen of the World	
Sales & Marketing Director	Communications Specialist	
VP Mktg	Designer	
Department Manager	Marketing Operations Manager	
VP Software & Infrastructure Engineering	Chief Police Officer	
Associate Marketing Manager	Assistant Events Manager	
Graphic Designer / Jr. Project Manager	SR Underwriter	
Marketing Manager	President	
Application Analyst/Designer		
President	10/6;	
VP of Op	Have!	
Marketing Projects Manager		

Event Planner

- Stemming:
 - o removing: Jr, Sr. etc.
 - replacing: &,/ etc.
- **Tokenization** and **di-gramms** generating:

```
"Account Manager" -> ['account', 'manager', 'account_manager']
```

"Sales Team Lead" -> [sales, 'manager', ..., 'team', 'team_lead']



There is new question: which classes should we use?

Standard Occupational Classification (SOC) and other lists isn't really helpful for our clients representation

- Clusterization doesn't work clusters is really hard for interpretation
- User in general can have a different roles at the same time

example: <u>Sales</u> & <u>Marketing</u> professional

- Clusterization doesn't work clusters is really hard for interpretation
- User in general can have a different roles at the same time

- Clusterization doesn't work clusters is really hard for interpretation
- User in general can have a different roles at the same time

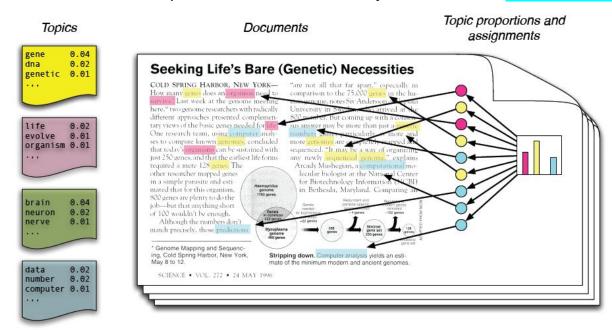
So idea is: let's define user as a 'document' and tokens related to this users as 'words' in this document

example: Aleksei have

- groups ["data engineers", "analytics", "R&D"],
- titles in profile ["software engineer", "data scientist", "data analyst"]
- Now we can use Topic Distribution tools like pLSA or LDA Latent Dirichlet **Allocation**

$$P(w,d) = \sum_c P(c)P(d|c)P(w|c) = P(d)\sum_c P(c|d)P(w|c)$$

Now we can use Topic Distribution tools like pLSA or LDA - Latent Dirichlet Allocation



$0.066*"marketing_strategy" + 0.055*"marketing" + 0.034*"sales" + 0.033*"management" + 0.032*"social_media_marketing" + 0.031*"strategic_planning")$	Social Media, PR & Brand Marketing
'0.077*"training" + 0.054*"leadership_development" + 0.048*"recruiting" + 0.044*"human_resources" + 0.044*"coaching" + 0.040*"organizational_development"')	HR
'0.079*"css" + 0.068*"html" + 0.063*"web_development" + 0.058*"javascript" + 0.042*"php" + 0.040*"jquery"')	Production & QA
'0.058*"nonprofits" + 0.056*"community_outreach" + 0.052*"public_speaking" + 0.043*"fundraising" + 0.030*"volunteer_management" + 0.030*"event_planning"')	Campaign & Event Management
'0.043*"sales" + 0.040*"sales_management" + 0.039*"customer_service" + 0.039*"account_management" + 0.038*"team_building" + 0.035*"management")	Sales & Account Management
'0.057*"saas" + 0.046*"enterprise_software" + 0.046*"cloud_computing" + 0.044*"software_development" + 0.041*"sql" + 0.038*"java"")	Production & QA

$$P(w,d) = \sum_c P(c)P(d|c)P(w|c) = P(d)\sum_c P(c|d)P(w|c)$$

- LDA is awesome!
- We found interpretable topics and right describing keywords

Classes

Topics also should be splitted for at least 3 groups - Category Type

- Functional Roles
- I evel
- **Professional Industry**

example: VP of Marketing

- High level manager
- Marketing Role

Professional Industry is also important to separate Job Titles like:

- Professor of Marketing Management isn't really marketing role
- Chief Police Officer isn't really C-Level like COO/CTO etc.

Classes: Functional Role

Executives

Marketing

Creatives

Customer Services & Customer Support

Product Development

IT Ops & Technology

Engineering

Sales & Account Mgmt

Other Operations

Product mgmt.

Project/Program mgmt.

Consulting & Professional Services

Accounting, Finance & Audit

Administrative

HR

Education

Analytics, Research & Data Science

Other Mgmt Role

Other

Classes: Level

CEO/(Co)Founder/Owner C-Level & Partner VP/Head of **Director, Sr. Director, Associate Director Group Manager, Lead, Coordinator Consultant, Advisor** Manager, Sr. Manager, Supervisor, Strategist Specialist, Professional, Analyst **Entry-level Other**

Classes: Professional Industry

Marketing & Advertising

Churches & Charity

Financial & Law Services

Administrative & Government

Manufacturing

Health & Fitness

Science & Education

Information Technology

Media & Entertainment

Design, Photography & Publishing

Environment

Transportation & Supply Chain, Retail

Consumer Services & Leisure

Other

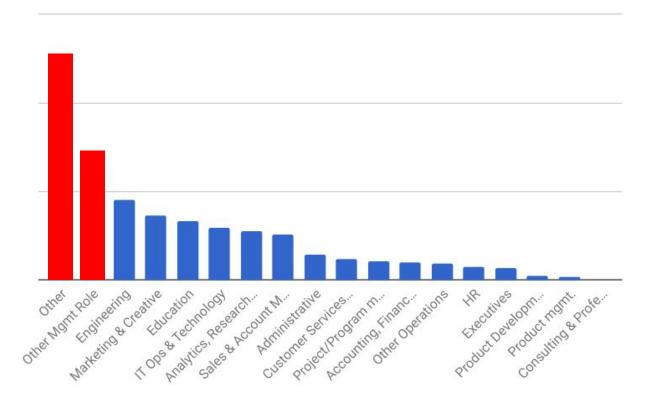
Problems: Misclassification

Sales <u>Engineer</u> -> Engineering

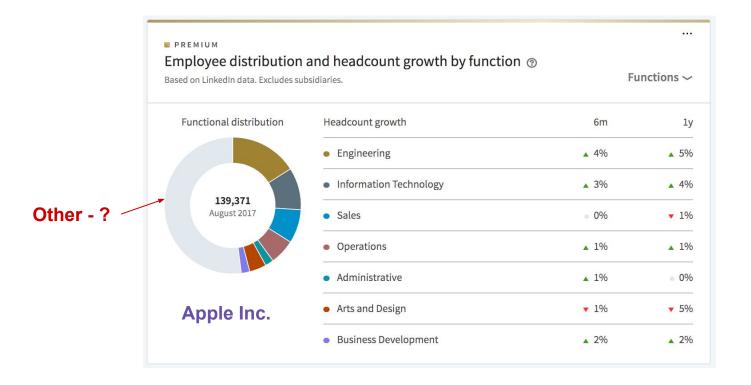
Business <u>Developer</u> -> Engineering

Programmer Marketing Team -> Marketing

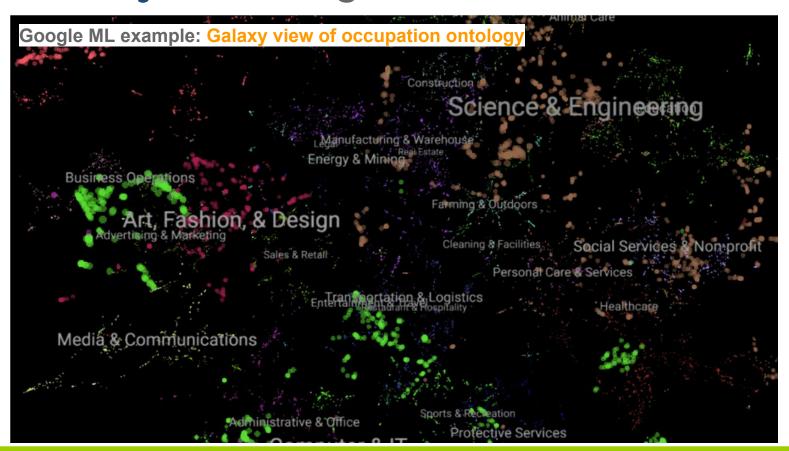
Problems: Other



Problems: Other



Industry Cases: Google Cloud ML Job Search API



Space of Job Titles can be really helpful

similarity(Sales, Account Manager) -> 0.9

similarity(Sales, Marketing) -> 0.7

similarity(Sales, Creative Director) -> 0.2

Deep learning approach

Textkernel team developed a solution special for Job Titles classification

example:

similarity(Sales, Account Manager) -> 0.9

similarity(Sales, Marketing) -> 0.7

similarity(Sales, Creative Director) -> 0.2

Siamese Neural Network for 'similar / dissimilar task' based on RNN

Deep learning approach

_

Job title 1	Job title 2	Similarity
Developer	Code Ninja	Similar
Service Desk Agent	Agile Java Tester	Dissimilar
Recruiter	Recriuter	Similar
Data Scientist	Buzz Saw Operator	Dissimilar
Talent Sourcer	Recruiter	Similar

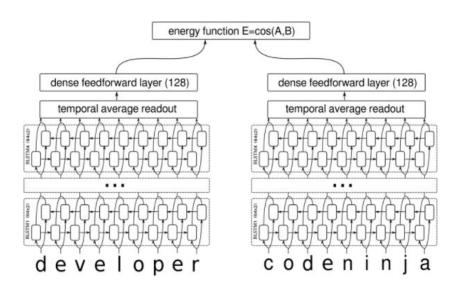
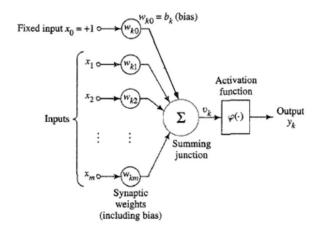
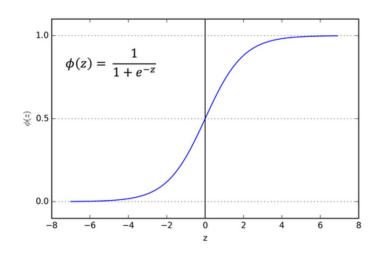


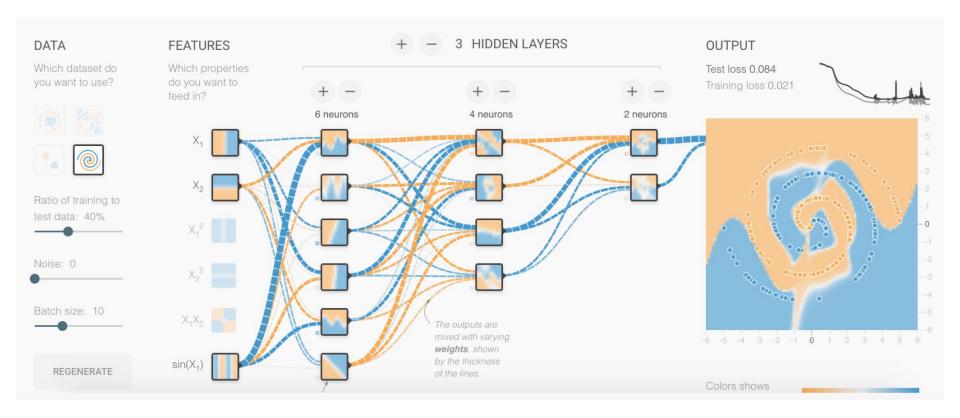
Figure 2: Network overview.

How it works: Neural Network Principles





How it works: Neural Network Principles



Deep learning approach

_

Job title 1	Job title 2	Similarity
Developer	Code Ninja	Similar
Service Desk Agent	Agile Java Tester	Dissimilar
Recruiter	Recriuter	Similar
Data Scientist	Buzz Saw Operator	Dissimilar
Talent Sourcer	Recruiter	Similar

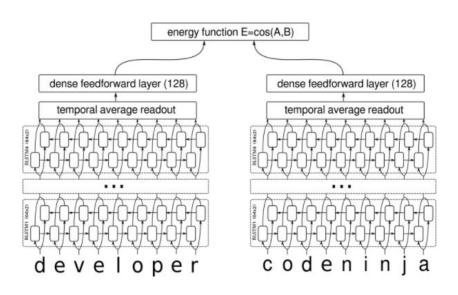
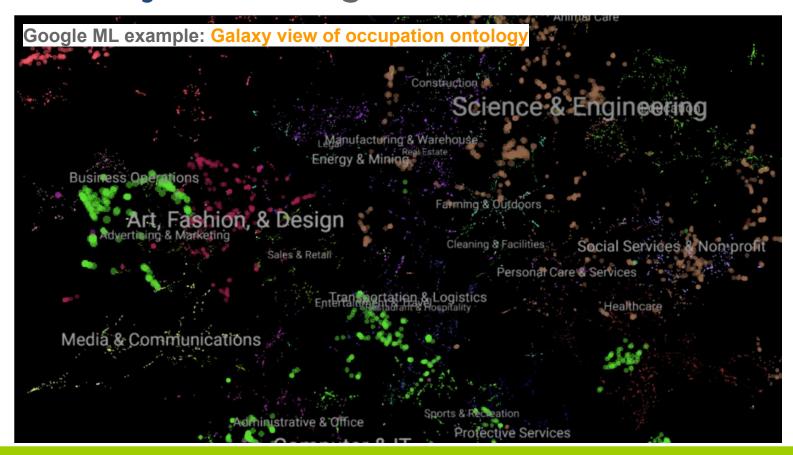
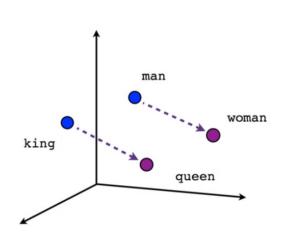


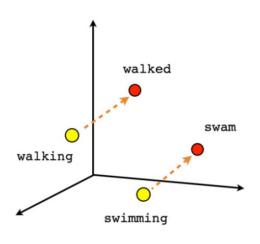
Figure 2: Network overview.

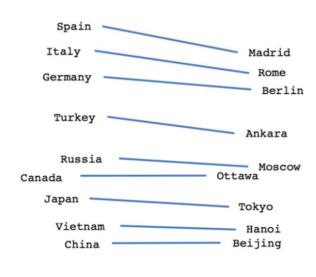
Industry Cases: Google Cloud ML Job Search API



Theory: Word2Vec







Male-Female

Verb tense

Country-Capital

The solution: find a <u>common factor</u>
which combines
different job titles
with adequate sense

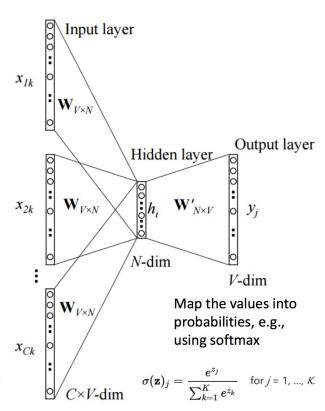
Theory: Word2Vec

CBOW

Representations

- · The W and W' are shared for all words
- · W and W' are the things we need
- · Each row in W and W' is the representation of a word in a new Ndimensional space
- Input/output vectors

$$\mathbf{h} = \frac{1}{C} \mathbf{W}^T (\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_C)$$
$$= \frac{1}{C} (\mathbf{v}_{w_1} + \mathbf{v}_{w_2} + \dots + \mathbf{v}_{w_C})^T$$



Clusterization vs Topic Distribution models

So idea is: let's define user as a 'document' and tokens related to this users as 'words' in this document

example: Aleksei have

- groups ["data engineers", "analytics", "R&D"],
- titles in profile ["software engineer", "data scientist", "data analyst"]
- Now we can use Topic Distribution tools like LDA Latent Dirichlet Allocation

Space of Job Titles can be really helpful

similarity(Sales, Account Manager) -> 0.9

similarity(Sales, Marketing) -> 0.7

similarity(Sales, Creative Director) -> 0.2

How it works: Tech Stack

The solution: find a <u>common factor</u>
which combines
different job titles
with adequate sense

Clusterization vs Topic Distribution models

So idea is: let's define user as a 'document' and tokens related to this users as 'words' in this document

example: <u>Aleksei</u> have

- groups ["data engineers", "analytics", "R&D"],
- titles in profile ["software engineer", "data scientist", "data analyst"]
- ...
- Now we can use Topic Distribution tools like LDA Latent Dirichlet Allocation

Aleksei Pupyshev Research and Development Team Lead / Data Scientist at Wrike

Experience:

Research and Development Team Lead at Wrike Inc.

Data Engineer, Data Analyst at Wrike Inc.

Software Engineer at Wrike Inc.

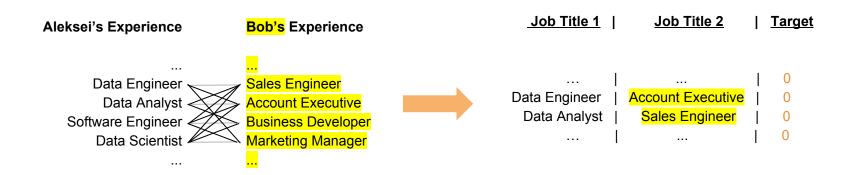
Data Scientist, Quantitative Researcher at QuantumBrains Hedge Fund

Data Scientist, Research Scientist at HBImed AG

Aleksei's Experience	Aleksei's Experience	<u>.</u>	Job Title 1	Job Title 2	<u>Target</u>
Data Engineer Data Analyst Software Engineer Data Scientist	Data Engineer Data Analyst Software Engineer Data Scientist		 ta Engineer rata Analyst 	 Software Engineer Data Scientist 	1 1 1 1

within one person job titles pairing as POSITIVE

random permutations of job titles pairing as NEGATIVE



Aleksei's Experience	Aleksei's Experience	Job Title 1	Job Title 2	<u>Target</u>
Data Engineer Data Analyst Software Engineer Data Scientist	Data Engineer Data Analyst Software Engineer Data Scientist	 Data Engineer Data Analyst 	 Software Engineer Data Scientist 	1 1 1 1
Aleksei's Experience	Bob's Experience	Job Title 1	Job Title 2	<u>Target</u>
Data Engineer Data Analyst Software Engineer Data Scientist	Sales Engineer Account Executive Business Developer Marketing Manager	Data Engineer Data Analyst	 <mark>Account Executive</mark> <mark>Sales Engineer</mark> 	0 0 0 0

	job_from_headline	job_from_experience	target	seq_expe	seq_head
50418	HR Technology and Operations Executive	Sr. Manager, Cloud HR Consulting & Transformation	1	[14, 4, 45, 2, 20, 5, 3, 5, 12, 1, 4, 31, 2, 1	[43, 29, 2, 30, 1, 10, 21, 3, 8, 11, 8 12, 25
50882	HR Business Partner, Energy	Recruiter	1	[29, 1, 10, 4, 13, 7, 6, 1, 4]	[43, 29, 2, 35, 13, 9, 7, 3, 1, 9, 9, 2 22, 5
50957	EHR Product Manager	Technical Engineer - ETL Data Integrator	1	[30, 1, 10, 21, 3, 7, 10, 5, 11, 2, 27, 3, 12,	[27, 43, 29, 2, 22, 4, 8, 15, 13, 10, 6 2, 20.
51624	Manager HR Data Reporting and Analytics	Forecast Manager	1	[34, 8, 4, 1, 10, 5, 9, 6, 2, 20, 5, 3, 5, 12,	[20, 5, 3, 5, 12, 1, 4, 2, 43, 29, 2, 26 5, 6.
51692	Senior HR Generalist	Labor Rep	1	[33, 5, 37, 8, 4, 2, 29, 1, 17]	[14, 1, 3, 7, 8, 4, 2, 43, 29, 2, 39, 1 3, 1,
53742	HR Business Partner	Branch Manager	1	[35, 4, 5, 3, 10, 21, 2, 20, 5, 3, 5, 12, 1, 4]	[43, 29, 2, 35, 13, 9, 7, 3, 1, 9, 9, 2 22, 5
54771	HR Program Manager	Assistant Head Instructor	1	[16, 9, 9, 7, 9, 6, 5, 3, 6, 2, 43, 1, 5, 15,	[43, 29, 2, 22, 4, 8, 12, 4, 5, 18, 2 20, 5,
55002	HR & Organizational Effectiveness Leader succe	Human Resource Manager - Acquisition Integration	1	[43, 13, 18, 5, 3, 2, 29, 1, 9, 8, 13, 4, 10	[43, 29, 2, 49, 2, 32, 4, 12, 5, 3, 7 56. 5

[48]:	job_from_headline		job_from_experience	target	seq_expe	seq_head
	38419	Sr. HR Information Systems Specialist	Colorado State University Student, Resident As	0	[19, 8, 11, 8, 4, 5, 15, 8, 2, 14, 6, 5, 6, 1,	[14, 4, 45, 2, 43, 29, 2, 28, 3, 23, 8 4, 18,
	38736	Manager, Human Resources/HR Business Partner	Graduate Student	0	[39, 4, 5, 15, 13, 5, 6, 1, 2, 14, 6, 13, 15,	[20, 5, 3, 5, 12, 1, 4, 31, 2, 43, 13 18, 5,
	40785	HR Staffing	President & CEO	0	[22, 4, 1, 9, 7, 15, 1, 3, 6, 2, 49, 2, 19, 27	[43, 29, 2, 14, 6, 5, 23, 23, 7, 3, 12
	40803	Retail HR Manager	staff rn	0	[9, 6, 5, 23, 23, 2, 4, 3]	[29, 1, 6, 5, 7, 11, 2, 43, 29, 2, 20, 5 3, 5
	41505	EHR Applications Specialist	Hilton San Diego Bayfront Finance MDP	0	[43, 7, 11, 6, 8, 3, 2, 14, 5, 3, 2, 26, 7, 1,	[27, 43, 29, 2, 16, 17, 17, 11, 7, 10, 5, 6, 7
	41556	Talent Acquisition/HR Shared Services Leader	Content Analysis	0	[19, 8, 3, 6, 1, 3, 6, 2, 16, 3, 5, 11, 25, 9,	[30, 5, 11, 1, 3, 6, 2, 16, 10, 60, 13 7, 9,
	41731	HR Generalist	Airline/Aviation Professional	0	[16, 7, 4, 11, 7, 3, 1, 41, 16, 24, 7, 5, 6, 7	[43, 29, 2, 39, 1, 3, 1, 4, 5, 11, 7, 9, 6]
	42022	HR Associate/Compliance Coordinator	Manager of Engineering Services	0	[20, 5, 3, 5, 12, 1, 4, 2, 8, 23, 2, 27,	[43, 29, 2, 16, 9, 9, 8, 10, 7, 5, 6, 1,

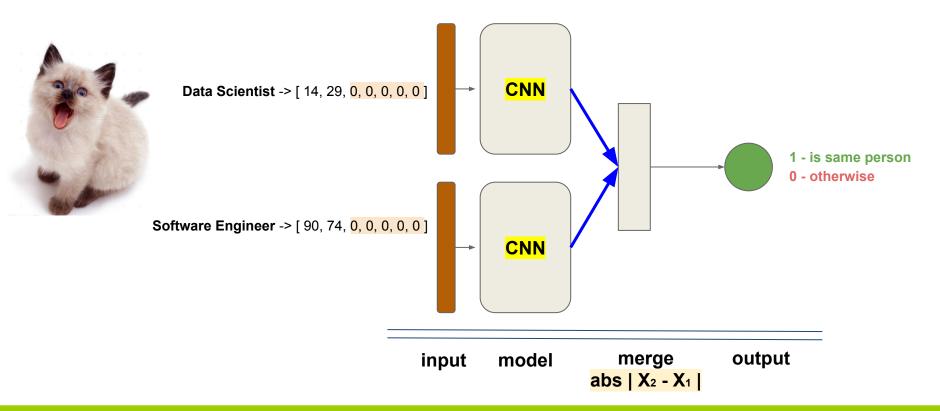
Step 0: **Stemming**

lower

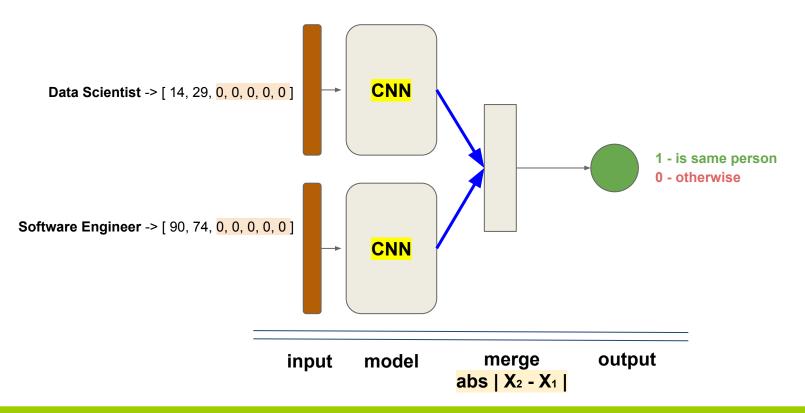
.replace '[^a-z]' to '_'

Step 1: Embeddings Matrix preparation

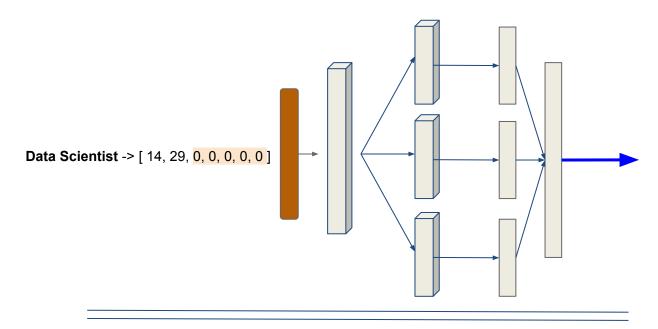
Step 2: Model Construction [Siamese neural network]



Step 2: Model Construction [Siamese neural network]

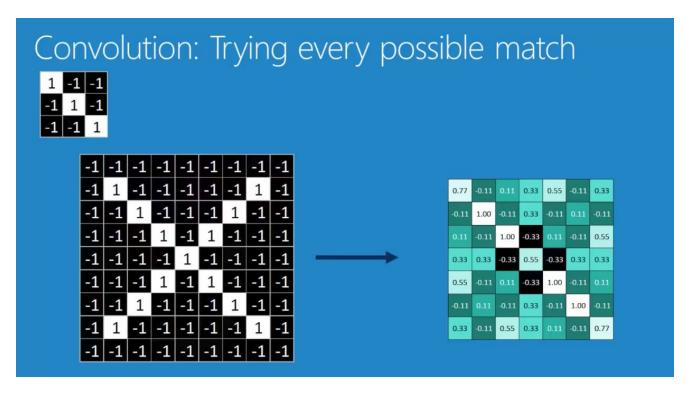


Step 2: Model Construction [Convolution Model]

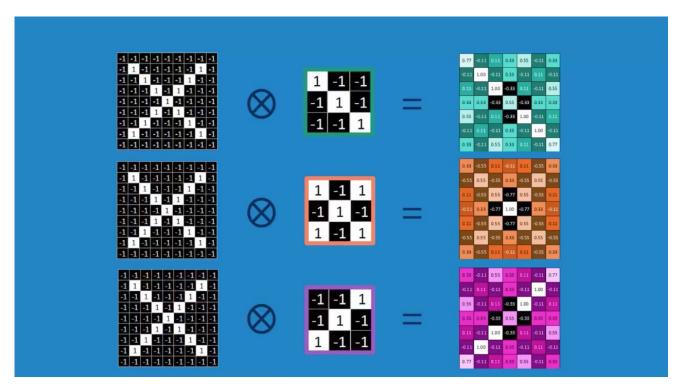


Input -> embeddings -> 3-convolution -> 3-global max pooling -> concatenation -> output

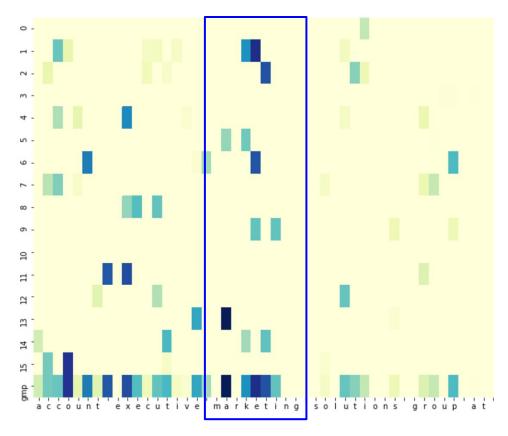
Step 2: Model Construction [Convolution Model]



Step 2: Model Construction [Convolution Model]

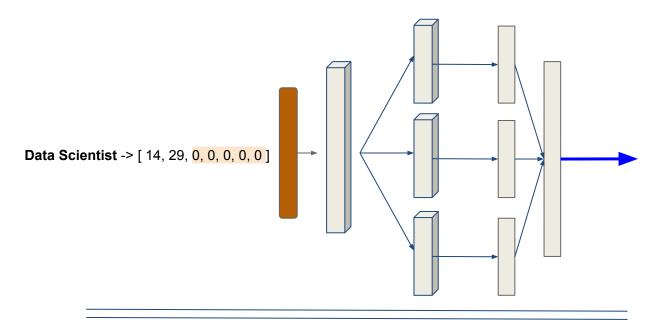


How it works: Neural Net. Architecture [based on characters]



Example: Convolution layer visualization

Step 2: Model Construction [Convolution Model]



Input -> embeddings -> 3-convolution -> 3-global max pooling -> concatenation -> output

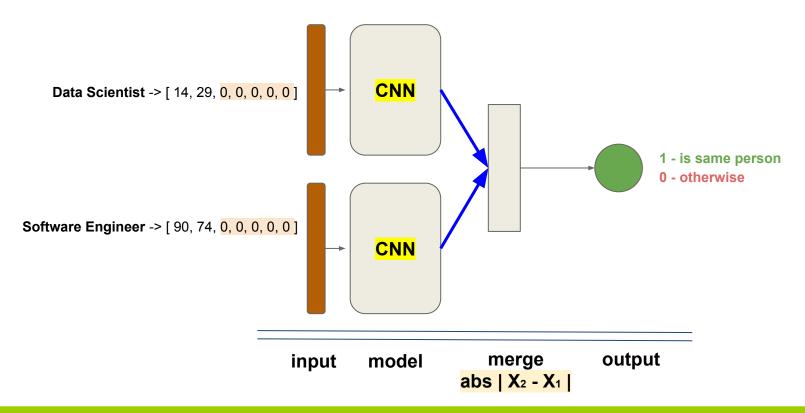
Layer (type)	Output	Shape	Param #	Connected to
input_22 (InputLayer)	(None,	7)	0	
embedding_4 (Embedding)	(None,	7, 50)	50050	input_22[0][0]
conv1d_10 (Conv1D)	(None,	7, 20)	1020	embedding_4[0][0]
conv1d_11 (Conv1D)	(None,	7, 20)	2020	embedding_4[0][0]
conv1d_12 (Conv1D)	(None,	7, 20)	3020	embedding_4[0][0]
<pre>global_max_pooling1d_10 (GlobalM</pre>	(None,	20)	0	conv1d_10[0][0]
<pre>global_max_pooling1d_11 (GlobalM</pre>	(None,	20)	0	conv1d_11[0][0]
<pre>global_max_pooling1d_12 (GlobalM</pre>	(None,	20)	0	conv1d_12[0][0]
concatenate_4 (Concatenate)	(None,	60	0	<pre>global_max_pooling1d_10[0][0] global_max_pooling1d_11[0][0] global_max_pooling1d_12[0][0]</pre>

Total params: 56,110

Trainable params: 56,110

Non-trainable params: 0

Step 2: Model Construction [Siamese neural network]



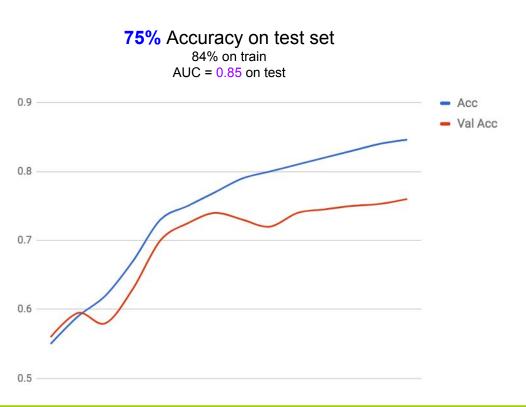
Layer (type)			Connected to
input_23 (InputLayer)	(None, 7)	0	
input_24 (InputLayer)	(None, 7)	0	
model_13 (Model)	(None, 60)	56110	input_23[0][0] input_24[0][0]
merge_10 (Merge)	(None, 60)	0	model_13[1][0] model_13[2][0]
dense_10 (Dense)	(None, 1)	61	merge_10[0][0]

Total params: 56,171

Trainable params: 56,171

Non-trainable params: 0

Step 3: Training



Eupotional Bala

Example: Senior Java Developer

runctional Role	Examples	Sillillarity	Inresnoia	Result
Engineering Accounting, Finance & Audit HR Marketing	Software Engineer Accountant HR Manager Marketing Specialist	0.8 0.5 0.3 0.6	0.5	Engineering

Most Poprosontativo

Similarity Thursday

Example: Founder & CEO

Functional Role	Most Representative Examples	Similarity	Threshold	Result
Engineering Accounting, Finance & Audit HR Marketing	Software Engineer Accountant HR Manager Marketing Specialist	0.1 0.1 <u>0.3</u> 0.2	0.5	Other

Maintenance

Before

Set of patterns Keywords **Priority Rules** Rude Mismatches

No quality metrics No change management Un-flexible for new categories Low coverage

After

Dataset

NN-Model & Tokenizer

Threshold

Relation: Most Representative Examples to

Categories

Accuracy

Flexible for fixes

Flexible for new categories

Coverage depends on threshold

Almost same code for other tasks

Eupetional Bala

Example: Senior Java Developer

runctional Role	Examples	Sillillarity	Inresnoia	Result
Engineering Accounting, Finance & Audit HR Marketing	Software Engineer Accountant HR Manager Marketing Specialist	0.8 0.5 0.3 0.6	0.5	Engineering

Similarity Threehold

Most Poprosontativo

Functional Dala

Example: Founder & CEO

Functional Role	Most Representative Examples	<u>Similarity</u>	Threshold	Result
Engineering Accounting, Finance & Audit HR Marketing	Software Engineer Accountant HR Manager Marketing Specialist	0.1 0.1 <u>0.3</u> 0.2	0.5	Other

Eupotional Bala

Example: Founder & CEO

Functional Role	Wost Representative	Similarity	Inreshold	Result
Executives & Top Management Accounting, Finance & Audit HR Marketing	Examples Vice President Accountant HR Manager Marketing Specialist	0.9 0.3 0.4 0.6	0.5	Executives & Top Management

Most Poprosontativo

Cimilarity

Restrictions: New Types of Categories

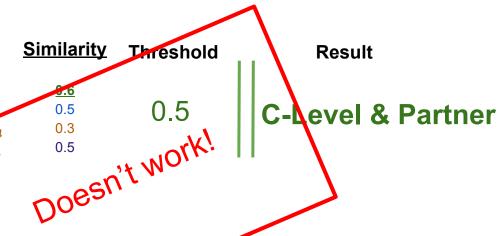
Example: Director of IT

Authority Level

CEO/(Co)Founder/Owner C-Level & Partner Director, Associate Director Specialist, Professional

Most Representative Examples

max { CEO, ..., Founder }
max { COO, CFO, ..., CTO }
max { Head of IT, ..., Director of IT }
max { Data Scientist, ..., Recruiter }



Restrictions: New Types of Categories

Example of Category: Authority Level

... until you'll find a common factor and build a good accuracy ml-model ...

Possible solution: Job Responsibilities

Scalability: Semantic Vectorization & IR

User ID	Job Title	Engineering Score	HR Score	 Marketing Score
876786876	Founder & CEO	0.3	0.6	 0.6
509801942	Java Developer	0.8	0.1	 0.2
912300427	Recruiter	0.1	0.9	 0.4

<u>where:</u> Engineering Score = <u>similarity</u>(Job Title, <u>'Software Engineer'</u>)

Scalability: Semantic Vectorization & IR

User ID	Job Title	Engineering Score	HR Score	 Marketing Score
876786876	Founder & CEO	0.3	0.6	 0.6
509801942	Java Developer	0.8	0.1	 0.2
912300427	Recruiter	0.1	0.9	 0.4

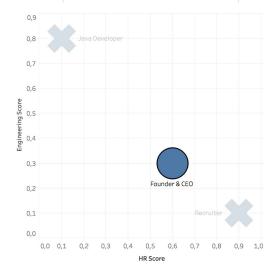
```
... or: Engineering Score = Agg {

similarity( Job Title, 'Software Engineer' ),
...,
similarity( Job Title, 'Data Scientist' )
}

where: Agg can be [Max, Min, Avg etc.]
```

Scalability: Semantic Vectorization & IR

User ID	Job Title	Engineering Score	HR Score	 Marketing Score
876786876	Founder & CEO	0.3	0.6	 0.6
509801942	Java Developer	0.8	0.1	 0.2
912300427	Recruiter	0.1	0.9	 0.4
		·		



Main idea again

The solution: find a <u>common factor</u>
which combines
different job titles
with adequate sense

Alternatives: Doc2Vec

Distributed Bag of Words version of Paragraph Vector (PV-DBOW)

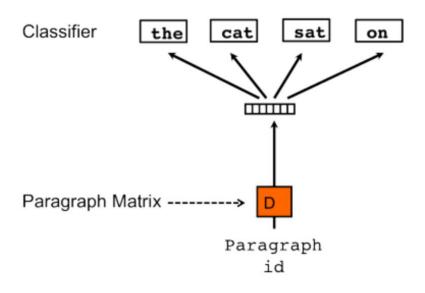


fig 4: PV-DBOW model

Main idea again

The solution: find a <u>common factor</u>
which combines
different job titles
with adequate sense

Main idea

- It's easy to start without having PhD in math
- It's bringing us to development of flexible and scalable solution for data processing
- It's bringing us to IR for complex and big data democratization

Special thanks!

Alexandr Ozerov • Data Scientist

Pavel Plotnikov • 1st Data Engineer at Wrike

Revekka Viktorova Data Analyst

Special thanks!

