Evolution of Tensorflow

Michael Simbirsky
Software Engineer at Google Research

Al Ukraine
Kharkiv, Ukraine, Sep. 2017

TensorFlow

Plan

Predecessors and the birth of ML at Google
Three pillars: algorithm, hardware and data
Flow graphs in TF and beyond.

TF and Google Cloud

What's next for TF? XLA, AutoML and others

FEEEee

LAPACK -- the mother of them all

-8

P

P

P

P -A
P -A
-P

000000

Written in Fortran 77 and 90 in 1992 with support from US
government
LAPACK uses BLAS(1,2,3):

o BLASLI: scalar on vector and dot-product

o BLAS2: matrix times vector

o BLASS3: matrix times matrix
LAPACK wrappers and extensions: R, Matlab, SciPy, Numpy,
Math Kernel Lib (Intel MKL), etc.

Lapack is the ultimate answer to many questions:

e Will TF/ML work on this chip? --- the answer is: provided Lapack works
e Why tensors are immutable? --- the answer is: because of Lapack
e efc.

Accelerating LAPACK

map

reduce

AD8D
-

Hardware acceleration and
parallelization for vector-vector
operations:

e MMX — CUDA — TPU

Software parallelization:

e Almost all algorithms in LAPACK
are recursive: split the matrix,
perform op, merge. The paradigm
known in algorithmic lingo as
“‘Map-Reduce”

e IMHO, LAPACK parallel
implementation by Intel (actually,
by Cilk) led to development of TBB
(c.2005)

Workflow graph

src detect_A

@ resource_join

buffers %
IIII- preprocess_function @ detection_join

detect_B

e One of the central ideas of TBB is “flow” graph
which is conceptually quite similar to TF Graph.
o Central idea: describe what you need, let the
system decide when and how
o More on this later

e While we are here, perfect ref on parallel "Design Patierns”, now
part of TBB docs.

https://software.intel.com/en-us/node/506112

Google starts using ML

Google has very specific infrastructure

with thousands of CPU and GPU

available for parallelism.

Existing ML platforms did not scale well

enough, so Jeff Dean et al. started
(2011, NIPS 2012)

Geoff Hunton applied Restricted

Boltzmann machines to create good initial

state for “deep” NN (~2010)

Transition from “wide” to “deep” NNs

made possible by advances in hardware,

algorithms and data -- circa 2010-2011.

https://static.googleusercontent.com/media/research.google.com/en/archive/large_deep_networks_nips2012.pdf

Jeff Dean at Google

e Author or co-author of MapReduce,
BigTable, Google Brain, :
TensorFlow.

Some of
e Google: it's basically a Jeff Dean's side project.
e Jeff Dean's PIN is the last 4 digits of pi
e Jeff Dean got promoted to level 11 in a system where max level is
10. (actually True.)
e When Jeff gives a seminar at Stanford, it's so crowded Don Knuth
has to sit on the floor. (True)
Compilers don't warn Jeff Dean. Jeff Dean warns compilers
Jeff Dean can instantiate abstract classes.
gcc -0O4 sends your code to Jeff Dean for a complete rewrite.
Jeff Dean doesn't exist, he's actually an advanced Al created by Jeff
Dean. 7

https://static.googleusercontent.com/media/research.google.com/en/archive/large_deep_networks_nips2012.pdf
https://www.quora.com/What-are-all-the-Jeff-Dean-facts

Central element of the flow: TF Graph

input layer ¢

hidden layers

output layer

Mathematically, this Neural Network (NN) represents a
function
I—n+1= S (Wn* Ln + Bn)
where L, is a vector, W, is a matrix of “weights”, B,, is a
vector of “biases”.
S is so called activation function, usually element-wise
transform like logistic function, tanh, relu, dropout, etc.
o (modern NNs usually use relu as much faster
alternative)

[
3\m
x)
N
N .

Important features of the TF Graph

) e Extendable (one can add “input” nodes for
* ! * forward feed, “loss” node for training or eval,
wperiew,) [vesaten,] [omsear) [wssien,, “gradient” nodes for back-propagation, etc.)
e Distributed: Nodes and subgraphs can be

placed onto specific device
o

SGD Trainer

e i)
é Mparrung_iate = {0000 Gradients
L 4

e e Persistent: you can save the graph or part of it
(and load on a different machine
e Graph topology is modifiable -- UNTIL YOU
LAUNCH THE SESSION
o E.g. SGD optimizer can modify the graph
by adding extra nodes, etc.

https://www.tensorflow.org/api_docs/python/tf/device

Most important slide about the Graph

Once you call session.Run(), Graph becomes non modifiable (except
weights and biases)

Once again: IT IS NOT MODIFIABLE

It means, TF can inspect, analyze, optimize, split, clone, transform the graph
any way it sees fit.

Two stages of TF Graph:
o Construction time (essentially, “at compile time”)
o Session time (aka “runtime” or “training time”)

Any “compile time” and JIT self-reflections and optimizations are beneficial:
o Typical training time at Google: 1-2 weeks on 100-1000 machines
o with 10-1000 Tb of data
YOU DO NOT WRITE IN PYTHON, YOU WRITE IN TENSORFLOW!
Your compiler is [inside] Tensorflow Session object

10

Tensorflow “compilation” elements

e All modern compilers do “truth propagation” aka “constant folding”
One class of important constants in TF are tensor shapes
o my_tensor.shape -- construction-time information about shape,
e.g. [?,3,5].
o tf.shape(my_tensor) -- run-time tensor op

e ==> Session.run() verifies that shapes are consistent with operations.

e Graphis a graph ==> all kind of graph algorithms (min-cut, clustering,
etc.) can produce valuable insights.

e COMPILATION TIME IS NEGLIGIBLE in comparison with TRAINING
or INFER TIME

e Bad news: error messages are cryptic

and buried within Python stack trace 1

Another twist in optimizations: TPUs

. . Tensor Processing Unit v2
e SGD is so noisy, no sense to compute g

AxB with high precision > "
e = instead of 32- and 64-bit FLOPs one
can use 16-bit or even 8-bit FLOPs
e = one gets much faster processing

TPUv2 Chip e : {
HBM HBM sy - -
Y e 8 GB core core 8 GB
po90e e 180 teraflops of computation, 64 GB of HBM memory, 2400 GB/s mem BW
scalar unit scalar unit Designed to be connected together into larger configurations

el e W 5 81 g =

99999 ' 2 =
a vt ;

e 16 GB of HBM > SEmsEmaE >
e 600 GB/s mem BW H
e Scalar unit: 32b float .
e MXU: 32b float H-HH

accumulation but

reduced precision for MXU MXU

multipliers 128x128 128x128
e 45 TFLOPS

Source:

https://www.servethehome.com/case-study-google-tpu-gddr5-hot-chips-29/

What made ML possible?

Three developments made current explosion of Machine
Learning possible:

e Better hardware: large amount of CPU, GPU and later
TPU
e Better algorithms: DNNs, CNNs, RNNs (LSTM, GRU,

Attention), GANSs, RL, etc.
e Huge, really enormous amounts of data

Monetization
e Data is not for sale!

e Hardware is not for sale!
e It turns out, of these three, the algorithms is the least

valuable part

==> (Google’s decision: open source Tensorflow

13

Where is the money (for Google)?

- in Al transformation

e CEO Sundar Pichai said that all of the company and its products
are being revamped to be “Al-first”

-- in the Cloud

e Google Cloud Al:

Large Scale Machine Learning Service
Image and Video analysis API

Speech Recognition API

Text analysis API

Translation API

o O O O O

14

People behind Google Cloud

e Diana Greene -- founder and

CEO of VMWare (till 2008) e Fei-Fei Li -- Stanford professor, director of Stanford
e now -- SVP for Google Cloud Al lab, creator of the |ImageNet project and
competition

e Chief Scientist at Google Cloud

15

https://en.wikipedia.org/wiki/ImageNet

Where does it take all of us?

Google employs at least 30,000 R&D engineers e AutoML (Auto Machine Learning) ... has
With “Al-first” principle many of them become users of the ability to change its own architecture”
Tensorflow

e They experiment with enormous amounts of data e Tensorboard
collected by Google (Search, Ads, Youtube, Maps, o started as learning visualization
Android, etc.) tool

e They build complicated and huge NNs o With open plugins it will convert to

ML IDE

e They face the same challenges you do:
o What NN will work the best?
o How to debug training?
o How to interpret NN results?

16

Thank you!

