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Plan
● Predecessors and the birth of ML at Google

● Three pillars: algorithm, hardware and data

● Flow graphs in TF and beyond. 

● TF and Google Cloud

● What’s next for TF? XLA, AutoML and others
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LAPACK -- the mother of them all
● Written in Fortran 77 and 90 in 1992 with support from US 

government 

● LAPACK uses BLAS(1,2,3): 

○ BLAS1: scalar on vector and dot-product

○ BLAS2: matrix times vector

○ BLAS3: matrix times matrix

● LAPACK wrappers and extensions: R, Matlab, SciPy, Numpy, 

Math Kernel Lib (Intel MKL), etc.

Lapack is the ultimate answer to many questions:

● Will TF/ML work on this chip?  --- the answer is: provided Lapack works

● Why tensors are immutable?   --- the answer is: because of Lapack

● etc.
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Accelerating LAPACK

Software parallelization:

● Almost all algorithms in LAPACK 

are recursive: split the matrix, 

perform op, merge. The paradigm 

known in algorithmic lingo as 

“Map-Reduce”

● IMHO, LAPACK parallel 

implementation by Intel (actually, 

by Cilk) led to development of TBB 

(c.2005)

map

reduce

Hardware acceleration and 

parallelization for vector-vector 

operations:

● MMX → CUDA → TPU
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Workflow graph

● One of the central ideas of TBB is “flow” graph 

which is conceptually quite similar to TF Graph. 

○ Central idea: describe what you need, let the 

system decide when and how

○ More on this later

● While we are here, perfect ref on parallel “Design Patterns”, now 

part of TBB docs. 
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Google starts using ML

● Google has very specific infrastructure 

with thousands of CPU and GPU 

available for parallelism. 

● Existing ML platforms did not scale well 

enough, so Jeff Dean et al. started 

DistBelief (2011, NIPS 2012)

● Geoff Hunton applied Restricted 

Boltzmann machines to create good initial 

state for “deep” NN (~2010)

● Transition from “wide” to “deep” NNs 

made possible by advances in hardware, 

algorithms and data -- circa 2010-2011.
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Jeff Dean at Google

● Author or co-author of MapReduce, 

BigTable, Google Brain, DistBelief, 

TensorFlow.

Some of Jeff Dean Facts

● Google: it's basically a Jeff Dean's side project.

● Jeff Dean's PIN is the last 4 digits of pi

● Jeff Dean got promoted to level 11 in a system where max level is 

10. (actually True.)

● When Jeff gives a seminar at Stanford, it's so crowded Don Knuth 

has to sit on the floor. (True)

● Compilers don't warn Jeff Dean. Jeff Dean warns compilers

● Jeff Dean can instantiate abstract classes.

● gcc -O4 sends your code to Jeff Dean for a complete rewrite.

● Jeff Dean doesn't exist, he's actually an advanced AI created by Jeff 

Dean. 7

https://static.googleusercontent.com/media/research.google.com/en/archive/large_deep_networks_nips2012.pdf
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Central element of the flow: TF Graph

● Mathematically, this Neural Network (NN) represents a 

function

Ln+1 = S ( Wn * Ln + Bn)

● where Ln is a vector, Wn is a matrix of “weights”, Bn is a 

vector of “biases”.

● S is so called activation function, usually element-wise 

transform like logistic function, tanh, relu, dropout, etc.

○ (modern NNs usually use relu as much faster 

alternative)
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Important features of the TF Graph

● Extendable (one can add “input” nodes for 

forward feed, “loss” node for training or eval, 

“gradient” nodes for back-propagation, etc.)

● Distributed: Nodes and subgraphs can be 

placed onto specific device 

○ with tf.device(name):

● Persistent: you can save the graph or part of it 

and load on a different machine

● Graph topology is modifiable -- UNTIL YOU 

LAUNCH THE SESSION

○ E.g. SGD optimizer can modify the graph 

by adding extra nodes, etc.
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https://www.tensorflow.org/api_docs/python/tf/device
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Most important slide about the Graph

● Once you call session.Run(), Graph becomes non modifiable (except 

weights and biases)

● Once again: IT IS NOT MODIFIABLE

● It means, TF can inspect, analyze, optimize, split, clone, transform the graph 

any way it sees fit.

● Two stages of TF Graph:

○ Construction time (essentially, “at compile time”)

○ Session time (aka “runtime” or “training time”)

● Any “compile time” and JIT self-reflections and optimizations are beneficial:

○ Typical training time at Google: 1-2 weeks on 100-1000 machines 

○ with 10-1000 Tb of data

● YOU DO NOT WRITE IN PYTHON, YOU WRITE IN TENSORFLOW!

● Your compiler is [inside] Tensorflow Session object
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Tensorflow “compilation” elements

● All modern compilers do “truth propagation” aka “constant folding”

● One class of important constants in TF are tensor shapes

○ my_tensor.shape -- construction-time information about shape, 

e.g. [?,3,5].  

○ tf.shape(my_tensor) -- run-time tensor op

● ==> Session.run() verifies that shapes are consistent with operations.

● Graph is a graph ==> all kind of graph algorithms (min-cut, clustering, 

etc.) can produce valuable insights.

● COMPILATION TIME IS NEGLIGIBLE in comparison with TRAINING 

or INFER TIME

● Bad news: error messages are cryptic 

and buried within Python stack trace
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Another twist in optimizations: TPUs

● SGD is so noisy, no sense to compute 

AxB with high precision 

● ⇒ instead of 32- and 64-bit FLOPs one 

can use 16-bit or even 8-bit FLOPs

● ⇒ one gets much faster processing

Source: https://www.servethehome.com/case-study-google-tpu-gddr5-hot-

chips-29/
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What made ML possible?

Three developments made current explosion of Machine 

Learning possible:

● Better hardware: large amount of CPU, GPU and later 

TPU

● Better algorithms: DNNs, CNNs, RNNs (LSTM, GRU, 

Attention), GANs, RL, etc.

● Huge, really enormous amounts of data

Monetization
● Data is not for sale!

● Hardware is not for sale!

● It turns out, of these three, the algorithms is the least 

valuable part

==> Google’s decision: open source Tensorflow
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Where is the money (for Google)?

-- in the Cloud

● Google Cloud AI:

○ Large Scale Machine Learning Service

○ Image and Video analysis API

○ Speech Recognition API

○ Text analysis API

○ Translation API

-- in AI transformation

● CEO Sundar Pichai said that all of the company and its products 

are being revamped to be “AI-first”
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People behind Google Cloud

● Diana Greene -- founder and 

CEO of VMWare (till 2008)

● now -- SVP for Google Cloud
● Fei-Fei Li -- Stanford professor, director of Stanford 

AI lab, creator of the ImageNet project and 

competition

● Chief Scientist at Google Cloud
15

https://en.wikipedia.org/wiki/ImageNet
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Where does it take all of us?

● Google employs at least 30,000 R&D engineers

● With “AI-first” principle many of them become users of 

Tensorflow

● They experiment with enormous amounts of data 

collected by Google (Search, Ads, Youtube, Maps, 

Android, etc.)

● They build complicated and huge NNs

● They face the same challenges you do:

○ What NN will work the best?

○ How to debug training?

○ How to interpret NN results?

● AutoML (Auto Machine Learning) ... has 

the ability to change its own architecture”

● Tensorboard 

○ started as learning visualization 

tool

○ With open plugins it will convert to 

ML IDE
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Thank you!
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