
Confidential & Proprietary

Evolution of Tensorflow

Michael Simbirsky
Software Engineer at Google Research

AI Ukraine

Kharkiv, Ukraine, Sep. 2017

1

Confidential & Proprietary

Plan
● Predecessors and the birth of ML at Google

● Three pillars: algorithm, hardware and data

● Flow graphs in TF and beyond.

● TF and Google Cloud

● What’s next for TF? XLA, AutoML and others

2

Confidential & Proprietary

LAPACK -- the mother of them all
● Written in Fortran 77 and 90 in 1992 with support from US

government

● LAPACK uses BLAS(1,2,3):

○ BLAS1: scalar on vector and dot-product

○ BLAS2: matrix times vector

○ BLAS3: matrix times matrix

● LAPACK wrappers and extensions: R, Matlab, SciPy, Numpy,

Math Kernel Lib (Intel MKL), etc.

Lapack is the ultimate answer to many questions:

● Will TF/ML work on this chip? --- the answer is: provided Lapack works

● Why tensors are immutable? --- the answer is: because of Lapack

● etc.

3

Confidential & Proprietary

Accelerating LAPACK

Software parallelization:

● Almost all algorithms in LAPACK

are recursive: split the matrix,

perform op, merge. The paradigm

known in algorithmic lingo as

“Map-Reduce”

● IMHO, LAPACK parallel

implementation by Intel (actually,

by Cilk) led to development of TBB

(c.2005)

map

reduce

Hardware acceleration and

parallelization for vector-vector

operations:

● MMX → CUDA → TPU

4

Confidential & Proprietary

Workflow graph

● One of the central ideas of TBB is “flow” graph

which is conceptually quite similar to TF Graph.

○ Central idea: describe what you need, let the

system decide when and how

○ More on this later

● While we are here, perfect ref on parallel “Design Patterns”, now

part of TBB docs.
5

https://software.intel.com/en-us/node/506112

Confidential & Proprietary

Google starts using ML

● Google has very specific infrastructure

with thousands of CPU and GPU

available for parallelism.

● Existing ML platforms did not scale well

enough, so Jeff Dean et al. started

DistBelief (2011, NIPS 2012)

● Geoff Hunton applied Restricted

Boltzmann machines to create good initial

state for “deep” NN (~2010)

● Transition from “wide” to “deep” NNs

made possible by advances in hardware,

algorithms and data -- circa 2010-2011.

6

https://static.googleusercontent.com/media/research.google.com/en/archive/large_deep_networks_nips2012.pdf

Confidential & Proprietary

Jeff Dean at Google

● Author or co-author of MapReduce,

BigTable, Google Brain, DistBelief,

TensorFlow.

Some of Jeff Dean Facts

● Google: it's basically a Jeff Dean's side project.

● Jeff Dean's PIN is the last 4 digits of pi

● Jeff Dean got promoted to level 11 in a system where max level is

10. (actually True.)

● When Jeff gives a seminar at Stanford, it's so crowded Don Knuth

has to sit on the floor. (True)

● Compilers don't warn Jeff Dean. Jeff Dean warns compilers

● Jeff Dean can instantiate abstract classes.

● gcc -O4 sends your code to Jeff Dean for a complete rewrite.

● Jeff Dean doesn't exist, he's actually an advanced AI created by Jeff

Dean. 7

https://static.googleusercontent.com/media/research.google.com/en/archive/large_deep_networks_nips2012.pdf
https://www.quora.com/What-are-all-the-Jeff-Dean-facts

Confidential & Proprietary

Central element of the flow: TF Graph

● Mathematically, this Neural Network (NN) represents a

function

Ln+1 = S (Wn * Ln + Bn)

● where Ln is a vector, Wn is a matrix of “weights”, Bn is a

vector of “biases”.

● S is so called activation function, usually element-wise

transform like logistic function, tanh, relu, dropout, etc.

○ (modern NNs usually use relu as much faster

alternative)

8

Confidential & Proprietary

Important features of the TF Graph

● Extendable (one can add “input” nodes for

forward feed, “loss” node for training or eval,

“gradient” nodes for back-propagation, etc.)

● Distributed: Nodes and subgraphs can be

placed onto specific device

○ with tf.device(name):

● Persistent: you can save the graph or part of it

and load on a different machine

● Graph topology is modifiable -- UNTIL YOU

LAUNCH THE SESSION

○ E.g. SGD optimizer can modify the graph

by adding extra nodes, etc.

9

https://www.tensorflow.org/api_docs/python/tf/device

Confidential & Proprietary

Most important slide about the Graph

● Once you call session.Run(), Graph becomes non modifiable (except

weights and biases)

● Once again: IT IS NOT MODIFIABLE

● It means, TF can inspect, analyze, optimize, split, clone, transform the graph

any way it sees fit.

● Two stages of TF Graph:

○ Construction time (essentially, “at compile time”)

○ Session time (aka “runtime” or “training time”)

● Any “compile time” and JIT self-reflections and optimizations are beneficial:

○ Typical training time at Google: 1-2 weeks on 100-1000 machines

○ with 10-1000 Tb of data

● YOU DO NOT WRITE IN PYTHON, YOU WRITE IN TENSORFLOW!

● Your compiler is [inside] Tensorflow Session object

10

Confidential & Proprietary

Tensorflow “compilation” elements

● All modern compilers do “truth propagation” aka “constant folding”

● One class of important constants in TF are tensor shapes

○ my_tensor.shape -- construction-time information about shape,

e.g. [?,3,5].

○ tf.shape(my_tensor) -- run-time tensor op

● ==> Session.run() verifies that shapes are consistent with operations.

● Graph is a graph ==> all kind of graph algorithms (min-cut, clustering,

etc.) can produce valuable insights.

● COMPILATION TIME IS NEGLIGIBLE in comparison with TRAINING

or INFER TIME

● Bad news: error messages are cryptic

and buried within Python stack trace
11

Confidential & Proprietary

Another twist in optimizations: TPUs

● SGD is so noisy, no sense to compute

AxB with high precision

● ⇒ instead of 32- and 64-bit FLOPs one

can use 16-bit or even 8-bit FLOPs

● ⇒ one gets much faster processing

Source: https://www.servethehome.com/case-study-google-tpu-gddr5-hot-

chips-29/
12

https://www.servethehome.com/case-study-google-tpu-gddr5-hot-chips-29/

Confidential & Proprietary

What made ML possible?

Three developments made current explosion of Machine

Learning possible:

● Better hardware: large amount of CPU, GPU and later

TPU

● Better algorithms: DNNs, CNNs, RNNs (LSTM, GRU,

Attention), GANs, RL, etc.

● Huge, really enormous amounts of data

Monetization
● Data is not for sale!

● Hardware is not for sale!

● It turns out, of these three, the algorithms is the least

valuable part

==> Google’s decision: open source Tensorflow

13

Confidential & Proprietary

Where is the money (for Google)?

-- in the Cloud

● Google Cloud AI:

○ Large Scale Machine Learning Service

○ Image and Video analysis API

○ Speech Recognition API

○ Text analysis API

○ Translation API

-- in AI transformation

● CEO Sundar Pichai said that all of the company and its products

are being revamped to be “AI-first”

14

Confidential & Proprietary

People behind Google Cloud

● Diana Greene -- founder and

CEO of VMWare (till 2008)

● now -- SVP for Google Cloud
● Fei-Fei Li -- Stanford professor, director of Stanford

AI lab, creator of the ImageNet project and

competition

● Chief Scientist at Google Cloud
15

https://en.wikipedia.org/wiki/ImageNet

Confidential & Proprietary

Where does it take all of us?

● Google employs at least 30,000 R&D engineers

● With “AI-first” principle many of them become users of

Tensorflow

● They experiment with enormous amounts of data

collected by Google (Search, Ads, Youtube, Maps,

Android, etc.)

● They build complicated and huge NNs

● They face the same challenges you do:

○ What NN will work the best?

○ How to debug training?

○ How to interpret NN results?

● AutoML (Auto Machine Learning) ... has

the ability to change its own architecture”

● Tensorboard

○ started as learning visualization

tool

○ With open plugins it will convert to

ML IDE

16

Confidential & Proprietary

Thank you!

17

