
Low rank approximation for
Convolution Neural Network

Samsung R&D Institute Ukraine
Vitaliy Bulygin

VGG-16 computational complexity

2.8%

Convolution layers Fully connected layers

1.94

2.77

4.62 4.62

1.39

0.41
0.017 0.0004

A big problem of any CNN approximation model

• Choose optimizer coefficients
• way to change them during training process
• batch size
• weight normalization
• dropout, etc

Fine-tuning
or re-train requirement

ResNet

VGG-16

A big problem of any CNN approximation model

You need to know the learning process
of the model

MS-CNN for pedestrian detection Solver

Fine-tuning requirement

A big problem of any CNN approximation model

Learning process of the
deep convolution neural network
is dark magic

Approximation process changes the model architecture.
Therefore learning process of the exact model
is not correct for approximated model

It is obtained manually by trial and error

Low rank approximation approaches

__

__

𝒅 filters

𝒌𝟏
𝒌𝟐
𝒄

A full rank
convolution layer

𝒘

𝒉

𝒄

∗
𝒅

𝒘

𝒉

𝒘

𝒉

𝒄 𝒎 < 𝒅

𝒘

𝒉
𝟏
𝒌

𝒎 filters

𝟏
𝒌

𝒅 filters

𝒅

𝒘

𝒉∗ ∗
Jaderberg et al., 2014
Y. Ioannou et al.,2016
Cheng Tai et al., 2016
etc …

𝒑 filters

𝒌𝟏
𝒌𝟐
𝒄

𝒅 filters

𝟏
𝟏

𝒘

𝒉

𝒄

∗
𝒑 < 𝒅

𝒘

𝒉 ∗
𝒅

𝒘

𝒉
X. Zhang et al., 2015
W. Wen et al.,2017
Lebedev et al., 2015
…

𝒅′

CNN approximation without fine-tuning

Xiangyu Zhang, Jianhua Zou, Kaiming He † , and Jian Sun

Accelerating Very Deep Convolutional
Networks for Classification and Detection

Max Jaderberg, Andrea Vedaldi, Andrew Zisserman

Speeding up Convolutional Neural Networks
with Low Rank Expansions

Max Jaderberg, Andrea Vedaldi, Andrew Zisserman

Compression of Deep Convolution Neural Network
for Fast and Low Power Mobile Applications

Convolution layer as matrix multiplication

𝒄

Input feature maps
𝒘× 𝒉 × c

𝒅

Output feature maps
𝒘× 𝒉 × d

𝝎𝟏

𝝎𝟐

𝝎𝒅

𝒄

𝒌𝟐 𝒌𝟏

3-dim filters
𝒌𝟏 × 𝒌𝟐 × 𝒄

𝒃𝟐

𝒃𝒅

𝒃𝟏

Convolution layer as matrix multiplication

𝒄

Input feature maps
𝒘× 𝒉 × c

𝒅

Output feature maps
𝒘× 𝒉 × d

𝒄

𝒌𝟐 𝒌𝟏

3-dim filters
𝒌𝟏 × 𝒌𝟐 × 𝒄

𝒃𝟏

𝒃𝟐

𝒃𝒅

𝝎𝟏

𝝎𝟐

𝝎𝒅

𝒙𝟏
𝒙𝟐
⋯

𝒙𝒌𝟏𝒌𝟐𝒄
𝟏

Convolution layer as matrix multiplication

𝒄 𝒅

𝝎𝟏

𝝎𝟐

𝝎𝒅

𝒙𝟏
𝒙𝟐
⋯

𝒙𝒌𝟏𝒌𝟐𝒄
𝟏

Convolution layer as matrix multiplication

𝒄 𝒅

𝝎𝟏

𝝎𝟐

𝝎𝒅

𝝎𝟏𝟏, 𝝎𝟐𝟏 , ⋯ ,𝝎𝒌𝟏𝒌𝟐𝒄 , 𝒃𝟏

𝒙𝟏
𝒙𝟐
⋯

𝒙𝒌𝟏𝒌𝟐𝒄
𝟏

⋅ =
𝒚𝟏
𝒚𝟐
⋯

𝒚𝒅

𝝎𝟏𝟏, 𝝎𝟏𝟐 , ⋯ ,𝝎𝟏,𝒌𝟏𝒌𝟐𝒄 , 𝒃𝟏
⋯
⋯

𝝎𝒅𝟏, 𝝎𝟏𝟐 , ⋯ ,𝝎𝒅,𝒌𝟏𝒌𝟐𝒄 , 𝒃𝒅

Convolution layer as matrix multiplication

𝒄

𝝎𝟏

𝝎𝟐

𝝎𝒅 𝒅

𝝎𝟏𝟏, 𝝎𝟏𝟐 , ⋯ ,𝝎𝟏,𝒌𝟏𝒌𝟐𝒄 , 𝒃𝟏
⋯
⋯

𝝎𝒅𝟏, 𝝎𝟏𝟐 , ⋯ ,𝝎𝒅,𝒌𝟏𝒌𝟐𝒄 , 𝒃𝒅

⋅ 𝒙𝟏, ⋯ , 𝒙𝒏 = 𝒚𝟏, ⋯ , 𝒚𝒏

Where 𝒙𝒊 ∈ ℝ𝒌𝟏𝒌𝟐𝒄+𝟏,

𝒚𝒊 ∈ ℝ𝒅

𝑾 ∈ ℝ𝒅,𝒌𝟏𝒌𝟐𝒄+𝟏

Convolution layer as matrix multiplication

𝝎𝟏𝟏, 𝝎𝟏𝟐 , ⋯ ,𝝎𝟏,𝒌𝟏𝒌𝟐𝒄 , 𝒃𝟏
⋯
⋯

𝝎𝒅𝟏, 𝝎𝟏𝟐 , ⋯ ,𝝎𝒅,𝒌𝟏𝒌𝟐𝒄 , 𝒃𝒅

⋅ 𝒙𝟏, ⋯ , 𝒙𝒏 = 𝒚𝟏, ⋯ , 𝒚𝒏

Where

4-dimensional
weight filters

𝒙𝒊 ∈ ℝ𝒌𝟏𝒌𝟐𝒄+𝟏,

𝒚𝒊 ∈ ℝ𝒅

𝑾 ∈ ℝ𝒅,𝒌𝟏𝒌𝟐𝒄+𝟏

Convolution layer as matrix multiplication

𝝎𝟏𝟏, 𝝎𝟏𝟐 , ⋯ ,𝝎𝟏,𝒌𝟏𝒌𝟐𝒄 , 𝒃𝟏
⋯
⋯

𝝎𝒅𝟏, 𝝎𝟏𝟐 , ⋯ ,𝝎𝒅,𝒌𝟏𝒌𝟐𝒄 , 𝒃𝒅

⋅ 𝒙𝟏, ⋯ , 𝒙𝒏 = 𝒚𝟏, ⋯ , 𝒚𝒏

Where

𝑾

4-dimensional
weight filters

𝑾 ⋅ 𝒙 = 𝒚

𝒙 𝒚

𝒙𝒊 ∈ ℝ𝒌𝟏𝒌𝟐𝒄+𝟏,

𝒚𝒊 ∈ ℝ𝒅

𝑾 ∈ ℝ𝒅,𝒌𝟏𝒌𝟐𝒄+𝟏

Convolution layer as matrix multiplication

𝝎𝟏𝟏, 𝝎𝟏𝟐 , ⋯ ,𝝎𝟏,𝒌𝟏𝒌𝟐𝒄 , 𝒃𝟏
⋯
⋯

𝝎𝒅𝟏, 𝝎𝟏𝟐 , ⋯ ,𝝎𝒅,𝒌𝟏𝒌𝟐𝒄 , 𝒃𝒅

⋅ 𝒙𝟏, ⋯ , 𝒙𝒏 = 𝒚𝟏, ⋯ , 𝒚𝒏

Where

𝑾

4-dimensional
weight filters

𝑾 ⋅ 𝒙 = 𝒚

𝒙 𝒚

𝒙𝒊 ∈ ℝ𝒌𝟏𝒌𝟐𝒄+𝟏,

𝒚𝒊 ∈ ℝ𝒅

𝑾 ∈ ℝ𝒅,𝒌𝟏𝒌𝟐𝒄+𝟏

𝒏 = 𝒘 ⋅ 𝒉 ⋅ 𝑵

Input feature maps width height

Number of images ≫ 𝟏

Convolution layer as matrix multiplication

Low rank approximation of output feature maps

Assumption –
Output feature maps
is redundant

𝒅
𝒅′ 𝒅′ ≪ 𝒅

Feature map ‘basis’

𝒑𝟏
𝒊 ⋅ 𝒑𝒅′

𝒊 ⋅

𝒊𝒕𝒉 feature map

Low rank approximation of output feature maps

Mathematical point of view for 𝒅′ ∶ σ𝒊=𝒅′+𝟏
𝒅 𝝈𝒊 < 𝝐

∃ 𝒖𝟏, ⋯ , 𝒖𝒅′ ∶ 𝒚
𝒍 ≈ ෍

𝒊=𝟏

𝒅′

𝑝𝑖
𝒍 ⋅ 𝒖𝒊 ,

Basis 𝑼 = 𝒖𝟏, ⋯𝒖𝒅 is the eigenvectors of 𝒚𝒚𝒕

𝒚𝒚𝒕 = 𝑼 ⋅ 𝑺 ⋅ 𝑼𝒕 =෍

𝒊=𝟏

𝒅

𝝈𝒊 ⋅ 𝒖𝒊
𝒕 ⋅ 𝒖𝒊,

𝝈𝟏 > 𝝈𝟐 > ⋯ > 𝝈𝒅

Basis

𝝈𝒊 is eigenvalues and ≈ dispersion of values on 𝒚𝒊 axis
PCA gives
answer!

Low rank approximation of output feature maps

𝒀𝒀𝒕 = 𝑼 ⋅ 𝑺 ⋅ 𝑼𝒕 =෍

𝒊=𝟏

𝒅

𝝈𝒊 ⋅ 𝒖𝒊
𝒕 ⋅ 𝒖𝒊 ≈෍

𝒊=𝟏

𝒅′

𝝈𝒊 ⋅ 𝒖𝒊
𝒕 ⋅ 𝒖𝒊

𝝈𝟏 > 𝝈𝟐 > ⋯ > 𝝈𝒅

𝒅′ 𝒚𝒚𝒕 eigenvalues for
VGG-16 1st block,
2nd convolution layer,
1000 randomly sampled
training images

index

Separate “heavy” layer on two “light” layers

𝒚 ≈ ෍

𝒊=𝟏

𝒅′

𝒖𝒊, 𝒚 ⋅ 𝒖𝒊 = 𝑼𝒅′ ⋅ 𝑼𝒅′
𝒕 ⋅ 𝒚

Separate “heavy” layer on two “light” layers

𝒚 ≈ ෍

𝒊=𝟏

𝒅′

𝒖𝒊, 𝒚 ⋅ 𝒖𝒊 = 𝑼𝒅′ ⋅ 𝑼𝒅′
𝒕 ⋅ 𝒚 𝒚 ≈ 𝑼𝒅′ ⋅ 𝑼𝒅′

𝒕 ⋅ 𝑾 ⋅ 𝒙

𝒅 × 𝒏𝒅′ × 𝒅𝒅 × 𝒅′

Separate “heavy” layer on two “light” layers

𝒚 ≈ ෍

𝒊=𝟏

𝒅′

𝒖𝒊, 𝒚 ⋅ 𝒖𝒊 = 𝑼𝒅′ ⋅ 𝑼𝒅′
𝒕 ⋅ 𝒚 𝒚 ≈ 𝑼𝒅′ ⋅ 𝑼𝒅′

𝒕 ⋅ 𝑾 ⋅ 𝒙

𝑾’𝑷

𝝎𝟏𝟏, 𝝎𝟏𝟐 , ⋯ ,𝝎𝟏,𝒌𝟏𝒌𝟐𝒄 , 𝒃𝟏
⋯
⋯

𝝎𝒅𝟏, 𝝎𝟏𝟐 , ⋯ ,𝝎𝒅,𝒌𝟏𝒌𝟐𝒄 , 𝒃𝒅

𝝎𝟏

𝝎𝒅

𝟏
𝟏

∈ ℝ𝒅′,𝒅

𝒅 × 𝒏𝒅′ × 𝒅𝒅 × 𝒅′

𝑾 ⋅ 𝒙 − 𝑨 ⋅ 𝑾 ⋅ 𝒙 ՜
𝑨
𝒎𝒊𝒏Mathematically we find low-rank matrix 𝑨 :

Separate “heavy” layer on two “light” layers

𝒚 ≈ ෍

𝒊=𝟏

𝒅′

𝒖𝒊, 𝒚 ⋅ 𝒖𝒊 = 𝑼𝒅′ ⋅ 𝑼𝒅′
𝒕 ⋅ 𝒚 𝒚 ≈ 𝑼𝒅′ ⋅ 𝑼𝒅′

𝒕 ⋅ 𝑾 ⋅ 𝒙

𝑾’𝑷

𝒌𝟏
𝒌𝟐

𝟏
𝟏

∗

𝒅′ < 𝒅

𝒘

𝒉 ∗

𝒅

𝒘

𝒉

𝒘

𝒉

𝒄
𝒅′

𝑷𝑾’

Separate “heavy” layer on two “light” layers

𝒌𝟏
𝒌𝟐

𝟏
𝟏

∗

𝒅′ < 𝒅

𝒘

𝒉 ∗

𝒅

𝒘

𝒉

𝒘

𝒉

𝒄
𝒅′

Feature map ‘basis’

𝒑𝟏 ⋅ 𝒑𝒅′ ⋅

𝒅’ filters 𝒅 filters

Separate “heavy” layer on two “light” layers

𝒌𝟏
𝒌𝟐

𝟏
𝟏

∗

𝒅′ < 𝒅

𝒘

𝒉 ∗

𝒅

𝒘

𝒉

𝒘

𝒉

𝒄
𝒅′

𝒑𝟏 ⋅ 𝒑𝒅′ ⋅

Expansion coefficients

Separate “heavy” layer on two “light” layers

∗ ∗

∗
“heavy” layer

two “light” layers

𝑶 𝒅 ⋅ 𝒌𝟏 ⋅ 𝒌𝟐⋅ 𝒄

Numerical
complexity

𝑶 𝒅′ ⋅ 𝒌𝟏 ⋅ 𝒌𝟐⋅ 𝒄 +
+𝑶 𝒅𝒅′

Reduce video memory and accelerate on Τ≈ 𝒅 𝒅′ times

𝒅′ 𝒅

𝒅

How to choose 𝐝′

PCA Accumulative
energy

ൗ𝒆𝒋 = σ𝒊=𝟏
𝒋

𝝈𝒊 σ𝒊=𝟏
𝒅 𝝈𝒊

𝒚 − Responses from
1000 randomly sampled
training images

1st block,
1nd conv layer

𝒅′

𝟎. 𝟗𝟗

𝒅′

𝟎. 𝟗𝟗

1st block,
2nd conv layer

𝒅′

𝟎. 𝟗𝟗

2nd block,
2nd conv layer

𝒅′

𝟎. 𝟗𝟗

2nd block,
1st conv layer

Results

Top-5 error on ILSVRC-2012 (ImageNet) validation dataset (50K images)

Layer-by-layer
Independently

Error accumulation avoiding

𝑾 ⋅ 𝒙𝒏 − 𝑨 ⋅ 𝑾 ⋅ 𝒙𝒏 ՜
𝑨
𝒎𝒊𝒏Layer-by-layer

Exact model ⋯ 𝒙𝒏 ∗ 𝒚𝒏

Approximate
model

ෝ𝒙𝒏 = 𝒙𝒏 + 𝝐⋯ ∗ ⋯ ෝ𝒚𝒏

Error accumulation avoiding

𝑾 ⋅ 𝒙𝒏 − 𝑨 ⋅ 𝑾 ⋅ 𝒙𝒏 ՜
𝑨
𝒎𝒊𝒏Layer-by-layer

Exact model ⋯ 𝒙𝒏 ∗ 𝒚𝒏

Approximate
model

ෝ𝒙𝒏 = 𝒙𝒏 + 𝝐⋯ ∗ ⋯ ෝ𝒚𝒏

Vary filters to minimize difference

Error accumulation avoiding

𝑾 ⋅ 𝒙𝒏 − 𝑨 ⋅ 𝑾 ⋅ 𝒙𝒏 ՜
𝑨
𝒎𝒊𝒏Layer-by-layer

Exact model ⋯ 𝒙𝒏 ∗ 𝒚𝒏

Approximate
model

ෝ𝒙𝒏 = 𝒙𝒏 + 𝝐⋯ ∗ ⋯ ෝ𝒚𝒏

another input if n>1

Error accumulation avoiding

𝑾 ⋅ 𝒙𝒏 − 𝑨 ⋅ 𝑾 ⋅ 𝒙𝒏 ՜
𝑨
𝒎𝒊𝒏Layer-by-layer

𝑾 ⋅ 𝒙 − 𝑨 ⋅ 𝑾 ⋅ ෝ𝒙 ՜
𝑨
𝒎𝒊𝒏Taking into account

previous layer error

Error accumulation avoiding

𝑾 ⋅ 𝒙𝒏 − 𝑨 ⋅ 𝑾 ⋅ 𝒙𝒏 ՜
𝑨
𝒎𝒊𝒏Layer-by-layer

𝑾 ⋅ 𝒙 − 𝑨 ⋅ 𝑾 ⋅ ෝ𝒙 ՜
𝑨
𝒎𝒊𝒏Taking into account

previous layer error

Multivariable
Linear regression

𝑨 = 𝑾 ⋅ ෝ𝒙 ⋅ 𝒚𝒕 ⋅ 𝒚 ⋅ 𝒚𝒕 −𝟏

Error accumulation avoiding

𝑾 ⋅ 𝒙𝒏 − 𝑨 ⋅ 𝑾 ⋅ 𝒙𝒏 ՜
𝑨
𝒎𝒊𝒏Layer-by-layer

𝑾 ⋅ 𝒙 − 𝑨 ⋅ 𝑾 ⋅ ෝ𝒙 ՜
𝑨
𝒎𝒊𝒏Taking into account

previous layer error

𝑨 = 𝑾 ⋅ ෝ𝒙 ⋅ 𝒚𝒕 ⋅ 𝒚 ⋅ 𝒚𝒕 −𝟏

Inverse matrix
does not exist!

Multivariable
Linear regression

Error accumulation avoiding

𝑾 ⋅ 𝒙𝒏 − 𝑨 ⋅ 𝑾 ⋅ 𝒙𝒏 ՜
𝑨
𝒎𝒊𝒏Layer-by-layer

𝑾 ⋅ 𝒙 − 𝑨 ⋅ 𝑾 ⋅ ෝ𝒙 ՜
𝑨
𝒎𝒊𝒏Taking into account

previous layer error

𝑨 = 𝑾 ⋅ ෝ𝒙 ⋅ 𝒚𝒕 ⋅ 𝒚 ⋅ 𝒚𝒕 −

𝒚 ⋅ 𝒚𝒕 − is generelized inverse matrix

𝒚 ⋅ 𝒚𝒕 is low rank 𝒚 ⋅ 𝒚𝒕 −is low rank 𝑨 is low rank

𝑨 = 𝑼𝒅′𝑺𝒅′𝑽𝒅′ , 𝒅′ < 𝒅

Multivariable
reduced rank regression

Error accumulation avoiding

𝑾 ⋅ 𝒙𝒏 − 𝑨 ⋅ 𝑾 ⋅ 𝒙𝒏 ՜
𝑨
𝒎𝒊𝒏Layer-by-layer

𝑾 ⋅ 𝒙 − 𝑨 ⋅ 𝑾 ⋅ ෝ𝒙 ՜
𝑨
𝒎𝒊𝒏Taking into account

previous layer error

Multivariable
reduced rank regression 𝑨 = 𝑾 ⋅ ෝ𝒙 ⋅ 𝒚𝒕 ⋅ 𝒚 ⋅ 𝒚𝒕 −

𝒚 ⋅ 𝒚𝒕 − is generelized inverse matrix

𝒚 ≈ 𝑨 ⋅ 𝑾 ⋅ ෝ𝒙 = 𝑼𝒅′𝑺𝒅′𝑽𝒅′ ⋅ 𝑾 ⋅ ෝ𝒙

𝑾’𝑷 ∈ ℝ𝒅′,𝒅

Results

Top-5 error on ILSVRC-2012 (ImageNet) validation dataset (50K images)

Layer-by-layer
Independently

Error accumulation
avoiding

Activation function output correspondence

𝒌𝟏
𝒌𝟐
𝒄

𝟏
𝟏

𝒄

∗

𝒅′ < 𝒅

𝒘

𝒉 ∗

𝒅

𝒘

𝒉

𝒘

𝒉

𝒄

𝑾

𝒌𝟏
𝒌𝟐

𝒄

𝒘

𝒉

𝒄

∗

𝒅

𝒘

𝒉
𝒇

𝒇

Before

𝑾′ 𝑷

𝑾𝒙 − 𝑷 ⋅ 𝑾′ ⋅ ෝ𝒙 ՜𝒎𝒊𝒏 Activation
function

Activation function output correspondence

𝒌𝟏
𝒌𝟐
𝒄

𝟏
𝟏

𝒄

∗

𝒅′ < 𝒅

𝒘

𝒉 ∗

𝒅

𝒘

𝒉

𝒘

𝒉

𝒄

𝑾

𝒌𝟏
𝒌𝟐

𝒄

𝒘

𝒉

𝒄

∗

𝒅

𝒘

𝒉
𝒇

𝒇

𝑾′ 𝑷

?𝒇 𝑾𝒙 − 𝒇 𝑷 ⋅ 𝑾′ ⋅ ෝ𝒙 ՜𝒎𝒊𝒏

Activation function output correspondence

𝒇 𝑾𝒙 − 𝒇 𝑷 ⋅ 𝑾′ ⋅ ෝ𝒙 ՜𝒎𝒊𝒏We want

We have 𝑾𝒙− 𝑷 ⋅ 𝑾′ ⋅ ෝ𝒙 ՜𝒎𝒊𝒏

𝑼𝒅′𝑺𝒅′𝑽𝒅′𝑾

𝑼 = 𝑼𝒅′ 𝑺𝒅′ 𝑽 = 𝑺𝒅′𝑽𝒅′
Denote

𝒚 ෝ𝒚

Activation function output correspondence

𝑳 = 𝒇 𝒚 − 𝒇 𝑼 ⋅ 𝑽 ⋅ ෝ𝒚
𝑼,𝑽

𝒎𝒊𝒏We want

Gradient descent 𝒈𝒓𝒂𝒅𝑼𝑳 = −𝟐 ⋅ 𝒇 𝒚 − 𝒇 𝑼 ⋅ 𝑽 ⋅ ෝ𝒚 ⋅ 𝑽 ⋅ ෝ𝒚 T

𝒈𝒓𝒂𝒅𝑽𝑳 = −𝟐 ⋅ 𝑼𝑻 ⋅ 𝒇 𝒚 − 𝒇 𝑼 ⋅ 𝑽 ⋅ ෝ𝒚 ⋅ ෝ𝒚 T

𝑼𝟎 = 𝑼

𝑽𝟎 = 𝑼
𝑳 = 𝒚 − 𝑼 ⋅ 𝑽 ⋅ ෝ𝒚

𝑼,𝑽
𝒎𝒊𝒏

Solution of the previous problem:

𝑼𝒏 = 𝑼𝒏−𝟏 − 𝜼𝑼 ⋅ 𝒈𝒓𝒂𝒅𝑼𝑳

𝑽𝒏 = 𝑽𝒏−𝟏 − 𝜼𝑽 ⋅ 𝒈𝒓𝒂𝒅𝑽𝑳

Layer responses is too heavy!

𝒚 − responses from 1000 randomly sampled
training images 224x224 for 2nd conv layer

𝒚 is 𝟔𝟒 × 𝟐𝟐𝟒 ⋅ 𝟐𝟐𝟒 ⋅ 𝟏𝟎𝟎𝟎 ≈
𝟔𝟒 × 𝟓 ⋅ 𝟏𝟎𝟕 = 𝟑. 𝟐 ⋅ 𝟏𝟎𝟗

Very slow!

Stochastic gradient analogous

𝒚𝟏
𝒊𝟏

𝒚𝟐
𝒊𝟏

⋯

𝒚𝒅
𝒊𝟏

Batch is mixed data from
different input!

𝒊𝟏 image 𝒊𝟐 image 𝒊𝒎 image

෥𝒚 =

𝒚𝟏
𝒊𝟐

𝒚𝟐
𝒊𝟐

⋯

𝒚𝒅
𝒊𝟐

𝒚𝟏
𝒊𝒎

𝒚𝟐
𝒊𝒎

⋯

𝒚𝒅
𝒊𝒎

𝑳 = 𝒇 𝒚𝒃𝒂𝒕𝒄𝒉 − 𝒇 𝑼 ⋅ 𝑽 ⋅ ෝ𝒚𝒃𝒂𝒕𝒄𝒉 𝟐
𝟐

𝑼,𝑽
𝒎𝒊𝒏

Algorithm

𝑳 = 𝒇 𝒚 − 𝒇 𝑼 ⋅ 𝑽 ⋅ ෥𝒚 𝟐
𝟐

𝑼,𝑽
𝒎𝒊𝒏

ෝ𝒚𝒃𝒂𝒕𝒄𝒉= ෝ𝒚 𝑖1 , ⋯ ෝ𝒚 𝑖𝑚

𝑼𝟎 = 𝑼 𝑽𝟎 = 𝑼

𝑼𝒏
𝒊 = 𝑼𝒏−𝟏

𝒊
−

𝜼𝑼

𝒗𝑼
𝒏

𝒊

⋅ 𝒈𝒓𝒂𝒅𝑼𝑳 𝒊

𝜼𝑼= 𝜼𝑽 = 𝟏𝟎−𝟑, 𝜸 = 𝟎. 𝟗

𝒗𝑼
𝒏 = 𝜸 ⋅ 𝒗𝑼

𝒏 + 𝟏 − 𝜸 𝒈𝒓𝒂𝒅𝑼𝑳

Take a batch

RSMProp

Initialization

Gradient
descent

𝑽𝒏 𝒊 = 𝑽𝒏−𝟏
𝒊
−

𝜼𝑽

𝒗𝑽
𝒏

𝒊

⋅ 𝒈𝒓𝒂𝒅𝑽𝑳 𝒊

Optimization
problem

1)

2)

3)

4)

5)

𝒚= 𝒚 𝑖1 , ⋯𝒚 𝑖𝑚

Results

Top-5 error on ILSVRC-2012 (ImageNet) validation dataset (50K images)

Layer-by-layer
Independently

Activation function
output correspondence

Error accumulation
avoiding

Horizontal and vertical filters

𝒌𝟏
𝒌𝟐
𝒄

𝟏
𝟏

𝒄

∗

𝒅′ < 𝒅

𝒘

𝒉 ∗

𝒅

𝒘

𝒉

𝒘

𝒉

𝒄

𝑾′ 𝑷

𝒅′′ < 𝒅

𝒘

𝒉
𝟏

𝒌𝟐

𝒅′′ filters

𝟏
𝒌𝟏

𝒅′ filters

𝒅′

𝒘

𝒉
∗ ∗

𝒘

𝒉

𝒄

Jaderberg et al, 2014

Horizontal and vertical filters

𝒅′′ < 𝒅

𝒘

𝒉
𝟏

𝒌𝟐

𝒅′′ filters

𝟏
𝒌𝟏

𝒅′ filters

𝒅′

𝒘

𝒉
∗ ∗

𝒘

𝒉

𝒄

𝒖 = 𝒖𝒒
𝒍
𝒍=𝟏,𝒒=𝟏

𝒅′′, 𝒄
𝒗 = 𝒗𝒍

𝒑

𝒍=𝟏,𝒑=𝟏

𝒅′′, 𝒅′

Horizontal and vertical filters

𝒅′′ < 𝒅

𝒘

𝒉
𝟏

𝒌𝟐

𝒅′′ filters

𝟏
𝒌𝟏

𝒅′ filters

𝒅′

𝒘

𝒉
∗ ∗

𝒘

𝒉

𝒄

෍

𝒒=𝟏

𝒄

෍

𝒑=𝟏

𝒅′

𝑾𝒒
𝒑
−෍

𝒍=𝟏

𝒅′′

𝒖𝒒
𝒍 ∗ 𝒗𝒍

𝒑

𝟐

𝟐

𝒗𝒍
𝒑
, 𝒖𝒒

𝒍
𝒎𝒊𝒏

Jaderberg et al, 2014

𝒖 = 𝒖𝒒
𝒍
𝒍=𝟏,𝒒=𝟏

𝒅′′, 𝒄
𝒗 = 𝒗𝒍

𝒑

𝒍=𝟏,𝒑=𝟏

𝒅′′, 𝒅′

Horizontal and vertical filters

𝑳 = ෍

𝒒=𝟏

𝒄

෍

𝒑=𝟏

𝒅′

𝑾𝒒
𝒑
−෍

𝒍=𝟏

𝒅′′

𝒖𝒒
𝒍 ∗ 𝒗𝒍

𝒑

𝟐

𝟐

𝒗𝒍
𝒑
, 𝒖𝒒

𝒍
𝒎𝒊𝒏

Jaderberg et al, 2014

𝒈𝒓𝒂𝒅𝒖𝑳 = ෍

𝒒=𝟏

𝒄

𝑾𝒒
𝒑
− 𝒗𝒑 ⋅ 𝒖𝒒

𝑻
⋅ 𝒖𝒒

𝒈𝒓𝒂𝒅𝒗𝑳 = ෍

𝒒=𝟏

𝒄

𝑾𝒒
𝒑
− 𝒗𝒑 ⋅ 𝒖𝒒

𝑻 𝑻

⋅ 𝒗𝒑

𝒖𝒒 = 𝒖𝒒
𝟏, ⋯ , 𝒖𝒒

𝒅′′ − 𝒌𝟐 × 𝒅′′ matrix

𝒗𝒑 = 𝒗𝟏
𝒑
, ⋯ , 𝒗𝒅′′

𝒑
− 𝒌𝟏 × 𝒅′′ matrix

RMSProp

Results

Top-5 error on ILSVRC-2012 (ImageNet) validation dataset (50K images)

Layer-by-layer
independently

Error accumulation
avoiding

Horizontal and vertical filters

Activation function
output correspondence

Theoretical, CPU, GPU acceleration for 3x3 + 1x1 separation

GPU

CPU
• Caffe
• Cuda 8, cuDNN 6
• GPU – TitanX , 12Gb
• CPU - Intel(R) Core(TM)

i7-4790K CPU @ 4.00GHz

Theoretical, CPU, GPU acceleration for 3x1 + 3x1 + 1x1 separation

GPU

CPU• Caffe
• Cuda 8, cuDNN 6
• GPU – TitanX , 12Gb
• CPU - Intel(R) Core(TM)

i7-4790K CPU @ 4.00GHz

Theoretical, CPU, GPU acceleration for 3x1 + 3x1 + 1x1 separation

GPU

CPU

GPU very bad performance reasons:
• 1 × 𝑑 and 𝑑 × 1 layers are not optimized in cuDNN
• Difference between 1 × 1 and 𝑑 × 𝑑 layers performance is not at × 9

times , but we optimize only 3 × 3 layers
• Huge layers is better parallelized on GPU then light ones.

Conclusions

• It is better to avoid CNN learning during approximation process
• Output feature maps are highly correlated
• Take into account approximation not only separate layer but also

the whole model too.
• It is better to minimize difference with non-linear responses
• It is easy to obtain good approximation of square filter by

horizontal and vertical filters
• It is enough to obtain rule for output feature maps basis only for

1% of the training dataset (ImageNet) to interpolate it for the
whole dataset

• CuDNN does not optimize dx1 and 1xd filters
• Low rank approximation is good approach for CPU (for single

kernel is much better)

Neural Network Pruning results
SpeedUp of TensorFlow pruning for ConvNet on MNIST

Pruning is only for compression!
It accelerates only

fully-connected layers

Sparse matrix is a big problem!
1% loss of accuracy

Neural Network Pruning results
SpeedUp of TensorFlow pruning for ConvNet on MNIST

Pruning is only for compression!
It accelerates only

fully-connected layers

Song Han papers (mainly conference) and his
fantastic 4x acceleration with improved accuracy

