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HOow apout
medical field?




Medicine Is complex



Meaicine Is really complex
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Vledicine 1S massive



Interest over time

Super rapid growth
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Nevertheless...
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xaggle Merck Molecular Activity
Challenge 2012

B Inthe money [ Gold B Silver [ Bronze
# Apub Team Name Kernel Team Members Score ® Entries
1 - 9999 0.49409 20
2 = DataRobot 0.48811 37
3 a2 0.48209 88
4 v 1 Gangnam Style 0.48158 43
5 v 1 Luxtorpeda 0.48154 35




GUEST

Patients are about to see a new doctor: arti Artificial Intelligence could put
intelligence - lawvers and doctors OUT of a job

ALSTON GHAFOURIFAR, ENTEFY @ENTEFY JANUARY 31, | y - 1= M , '

~ Artificial Intelligence t professionals

Blog Grand Challenges v

IBM’s Watson Al Recommends Same
Treatment as Doctors in 99% of Cancer Cases

@& David Ramos/Getty Images

- ... 2.1
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B N , .

Digital Diagnosis: Intelligent Machines
1 Do a Better Job Than Humans
Will RObOtS Take Over Our By Anjali Jaiprakash , Jonathan Roberts and Ross Crawford - Jan 18,2016 ® 8,543

Robots will destroy our jobs - and we're

puter Program Beats Doctors at —— jupm ready for it

Inguishing Brain Tumors from
Two-thirds of Americans believe robots will soon perform most of the work done

I at I o “ c h a “ g e s by humans but 80% also believe their jobs will be unaffected. Time to think again

SCIENCE NEWS x SEPTEMBER 16, 2016




Diabetic Retinopathy

Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy in Retinal Fundus
Photographs

Skin Cancer

Dermatologist-level classification of skin cancer with
deep neural networks
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Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy in Retinal Fundus
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Diabetic Retinopathy

NORMAL VISION
Vision remains intact



Diabetic Retinopathy

NORMAL VISION DIABETIC RETINOPATHY
Vision remains intact Vision is obstructed by macular edema



Diabetic Retinopathy

'MAL VISION DIABETIC RETINOPATHY
remains intact Vision is obstructed by macular edema




Diabetic Retinopathy

'MAL VISION
remains intact

TIC RETINOPATHY
icted by macular edema
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54 US licensed ophthalmologists
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128 175 images for training

54 US licensed ophthalmologists

Classifty into healthy,
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Algorithm will only marginally be able to
outperform doctors
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The black curve is ROC for f

the Deep Learning algorithm

AUC of 97.4%
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Algorithm vs Ophthalmologists

The black curve is ROC for ~
the Deep Learning algorithm o

Points on ROC are
performances of individual

hthalm IS

Performances are very similar AUC of 97.4%




Algorithm vs Ophthalmologists

Deep Learning algorithm can
operate in any point on the curve

AUC of 97.4%
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High specificity mode (diagnosis)

Deep Learning algorithm can
operate in any point on the curve

AUC of 97.4%
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High sensitivity mode (screening)

High specificity mode (diagnosis)

Deep Learning algorithm can
operate in any point on the curve

AUC of 97.4%




Algorithm vs Ophthalmologists

High sensitivity mode (screening)

—
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High specificity mode (diagnosis)

Deep Learning algorithm can
operate In any point on the curve

While ophthalm IS = 's mode
s fixed by experience

AUC of 97.4%
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for Detection of Diabetic Retinopathy in Retinal Fundus
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Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy in Retinal Fundus
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Skin Cancer

Dermatologist-level classification of skin cancer with
deep neural networks
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Algoritnm vs Dermatologists

Carcinoma: 135 images

AUC of 96%
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Carcinoma: 135 images

Fach of the cases was | . .’".’1. '
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Carcinoma: 135 images

' } Performance of the
a3 algorithm was compared

to dermatologists

Average dermatologist’s
performance was
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Algorithm vs Dermatologists

Carcinoma: 135 images Melanoma: 130 images Melanoma: 111 images
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AUC of 96% AUC of 94% AUC of 91%



Algorithm vs Dermatologists

Carcinoma: 135 images
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Melanoma: 130 images Melanoma: 111 images

) 3

Across all biopsy verified datasets Deep Neural Network was superior

AUC of 94%




Diabetic Retinopathy

Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy in Retinal Fundus
°hotographs

https://jamanetwork.com/journals/jama/fullarticle/2588763

Skin Cancer

Dermatologist-level classification of skin cancer with
deep neural networks

https://www.nature.com/nature/journal/v542/n7639/tull/nature21056.htm|




-Few more Interesting applications



Diagnosing Parkinson from voice
(Al-Fatlawi et al., 2016)

Detection of hypoglycemic
episodes in children
(San et al., 2016)

Hemoglobin Alc

Timeline
Predicting subsequent

nospitalisation (Choi et al., 2016)

(-
o

— Ground-Truth
DCT+LBP SVR

— VGG-face CNN SVR

— RCNN Regression

(o0]
T

Pain intensity

950 180 210 240 270 300
| | | Frames |
Pain estimation from video

(Zhou et al., 2016)




2016 International Conference on Consumer Electronics-Taiwan

Application of Deep Learning for Recognizing Infant Cries

Chuan-Yu Chang, Jia-Jing Li
National Yunlin University of Science & Technology, Taiwan
E-mail: chuanyu@yuntech.edu.tw

Abstract--Crying is a way which infants express their needs to
their parents. In general, parents often feel worried and anxious
when infant crying. For realizing the reason of baby crying, this
paper presents an automatic infant crying recognition method.
Crying is convert to spectrogram. A convolutional neural
networks (CNN) based deep learning is then adopted to train and
classify the crying into three categories including hungry, pain,
and sleepy. Experimental results shows that the proposed method
achieves high classification accuracy.

I. INTRODUCTION

In recent years, deep learning with capability of high-level
abstraction had been widely applied to image recognition and
speech recognition [4]. There are many deep learning
algorithms had been proposed such as restricted Boltzmann
machine (RBM), convolutional neuron networks (CNN), deep
belief networks (DBN), and deep neuron networks (DNN).
Those deep learning algorithms have applied to many
applications successfully.

the training data. Dropout improves the performance of neural
networks on supervised learning tasks. Figure 1(a) and (b)
shows the structure of the original network and the network
adopted dropout technology, respectively.

(b)

Fig. 1. (a) 1s a normal neural network, (b) adopted dropout learning in the
neural network.
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Seems like revolution has not happened



Wny Deep Learning has not
revolutionised medicine yet”



Chart of possible reasons why deep learning may
fail to revolutionise medicine

L Ikelihood

Effect



We may fail to compose large enough datasets



We may fail to compose large enough datasets

Collecting data in
medicine
IS Very expensive




We may fail to compose large enough datasets

Medical data is often
porotected (for a good
reason)

Collecting data in
medicine
IS Very expensive
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We may fail to compose large enough datasets

We can build a model that can
distinguish them from other objects
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Radiology Informatics

AREAS OF RESEARCH

Deep Learning
Imaging Informatics

Machine Learning

DATASETS

Imaging Datasets

Natural Language
Datasets

Home About Members Projects

Medical Image Net

A petabyte-scale, cloud-based, multi-institutional, searchable, open repository of
diagnostic imaging studies for developing intelligent image analysis systems.

Featured Goals  POSSIDI|E SOlution

e Data migration/federation/honest broker
e Linkage to EMR and multi-omics

e Cohortdiscovery tools

e Image viewing software

e Governance

e Image classification and annotation

o Natural language processing, research data sets, crowd source
http://langlotzlab.stanford.edu/projects/medical-image-net/
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How doctors diagnose melanomas”?

There isa ABCD rule
they learned in college

Melanomas are
Asymmetrical

Colour can be patchy
and variegated

Iheir Borders are ‘ their Diameter IS
uneven — —— *usually > 6 millimetres
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How computers diagnose melanomas?

%matplotlib inline

import importlib

import utils2; importlib.reload(utils2)
from utils2 import *

from scipy.optimize import fmin 1 bfgs b
from scipy.misc import imsave
from keras import metrics

from vggl6é avg import VGG16 Avg

Using TensorFlow backend.
/home/mariya/anaconda3/envs/tensorflow35/1ib/python3.5/site-packages/sklearn/cross validation.py:44: DeprecationWar
ning: This module was deprecated in version 0.18 in favor of the model selection module into which all the refactor
ed classes and functions are moved. Also note that the interface of the new CV iterators are different from that of
this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

ImportError Traceback (most recent call last)
<ipython-input-1-a55306e6e585> in ()

8 from keras import metrics

9
---> 10 from vgglé avg import VGG16 Avg

/home/mariya/fastai/part2/vgglé avg.py in ()
11 from keras.utils.data utils import get file
12 from keras import backend as K
-> 13 from keras.applications.imagenet utils import decode predictions, preprocess input, obtain input shape
14
15

ImportError: cannot import name ' obtain_input shape'
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%matplotlib inline

import importlib

import utils2; importlib.reload(utils2)
from utils2 import *

from scipy.optimize import fmin 1 bfgs b
from scipy.misc import imsave
from keras import metrics

from vggl6é avg import VGG16 Avg

Using TensorFlow backend.
/home/mariya/anaconda3/envs/tensorflow35/1ib/python3.5/site-packages/sklearn/cross validation.py:44: DeprecationWar
ning: This module was deprecated in version 0.18 in favor of the model selection module into which all the refactor
ed classes and functions are moved. Also note that the interface of the new CV iterators are different from that of
this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

ImportError Traceback (most recent call last)

<ipython-input-1-a55306e6e585> in (
8 from keras import metrics —’ r ] r r ]
9
---> 10 from vgglé avg import VGG16 Avg e a O a

/home/mariya/fastai/part2/vggl6é avg.py in ()
11 from keras.utils.data utils import get file — —
12 from keras import backend as K
-> 13 from keras.applications.imagenet utils import decode predictions, preprocess input, obtain input shape
14
15

ImportError: cannot import name ' obtain_input shape'
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EXPLAINABLE ARTIFICIAL INTELLIGENCE: UNDERSTANDING,
VISUALIZING AND INTERPRETING DEEP LEARNING MODELS

Wojciech Samek', Thomas Wiegand*?, Klaus-Robert Miiller*>*

classify image

Black Box
—» | Rooster

Al System

prediction f(x)

Explanation methods

. LRP: Decomposition

)] (90 O b . YR = f(@)

/ '
\ - — O ' (how much does each pixel
\2} ' contribute to prediction)
4

\Q O . SA: Partial derivatives
heatmap explain prediction } R = |2 f(a)||
Al system's decision is -< | T 7 | |0z :
based on these pixels . . : :
Why explainability ? . (how much do changes in each

e e L LT e PP L P PP PP T ' pixel affect the prediction)

' Identify flaws and biases
. Learn about the problem '
. Ensure compliance to legislation

https://arxiv.org/pdf/1708.08296v1.pdf



Chart of possible reasons why deep learning may
fail to revolutionise medicine
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L Ikelihood

Effect
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This Is all great stuff, what is next”
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