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Diagnostics done manually

9 - 12 minutes per patient
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Across all biopsy verified datasets Deep Neural Network was superior
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Few more interesting applications



Diagnosing Parkinson from voice  
(Al-Fatlawi et al., 2016)

Detection of hypoglycemic  
episodes in children  
(San et al., 2016)
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Pain estimation from video  
(Zhou et al., 2016)

Predicting subsequent 
hospitalisation (Choi et al., 2016)
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Seems like revolution has not happened



Why Deep Learning has not 
revolutionised medicine yet?
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We may fail to compose large enough datasets

We can build a model that can 
distinguish them from other objects

Most of the cancers have different 
appearance

We would need a separate 
ImageNet for all of them



http://langlotzlab.stanford.edu/projects/medical-image-net/

Possible solution



http://langlotzlab.stanford.edu/projects/medical-image-net/
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https://arxiv.org/pdf/1708.08296v1.pdf
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This is all great stuff, what is next?
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Team: Lauri Listak  
Supervisor: Dmytro Fishman

Turning Machine Intelligence Against Lung Cancer

20%
of lung cancer deaths 
can be reduced with 
early detection

High False 
Positives rates
lead to interventional 
treatments, additional 
costs and patient 
anxiety
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