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What's the plan?

● Tasks for AI
● Data and where to find it
● Which data is better
● NN architecture comparison
● Links



  

Audio related AI tasks

● music auto tagging
● urban sound classification
● keyword spotting
● user identification
● etc.

→ in recommender system engines

→ in smart phones to detect the environment

→ in smart house systems



  



  



  

Data

https://github.com/karoldvl/ESC-50

https://serv.cusp.nyu.edu/projects/urbansound
dataset/urbansound8k.html

https://labrosa.ee.columbia.edu/millionsong/

https://en.wikipedia.org/wiki/List_of_datasets
_for_machine_learning_research#Sound_data

https://github.com/karoldvl/ESC-50
https://serv.cusp.nyu.edu/projects/urbansounddataset/urbansound8k.html
https://serv.cusp.nyu.edu/projects/urbansounddataset/urbansound8k.html
https://labrosa.ee.columbia.edu/millionsong/
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Sound_data
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#Sound_data


  

The ESC-50 dataset is a public labeled set of 2000 
environmental recordings (50 classes, 40 clips per class, 
5 seconds per clip) suitable for environmental sound 
classification tasks.



  



  

Data



  



  

Data



  

Data



  

Data

A mel-spectrograms is a kind of time-frequency representation.

It is obtained from an audio signal by computing the Fourier 
transforms of short, overlapping windows.

Each of these Fourier transforms constitutes a frame. These 
successive frames are then concatenated into a matrix to form 
the spectrogram.

Finally, the frequency axis is changed from a linear scale to a 
mel scale to reduce the dimensionality, and the magnitudes are 
scaled logarithmically.



  

Data

https://en.wikipedia.org/wiki/Mel_scale

https://en.wikipedia.org/wiki/Mel_scale


  

Data

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum

MFCC s are commonly derived as follows:

● Take the Fourier transform of (a windowed excerpt of) a signal.

● Map the powers of the spectrum obtained above onto the mel scale, using 
triangular overlapping windows.

● Take the logs of the powers at each of the mel frequencies.

● Take the discrete cosine transform of the list of mel log powers, as if it were 
a signal.

● The MFCCs are the amplitudes of the resulting spectrum.

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum


  

LibROSA
https://librosa.github.io/librosa/

python_speech_features
https://github.com/jameslyons/python_speech_features

More:

https://github.com/tyiannak/pyAudioAnalysis

https://github.com/naxingyu/opensmile

kapre
https://github.com/keunwoochoi/kapre

https://librosa.github.io/librosa/
https://github.com/jameslyons/python_speech_features
https://github.com/tyiannak/pyAudioAnalysis
https://github.com/naxingyu/opensmile
https://github.com/keunwoochoi/kapre


  



  



  



  

Deep Learning

https://redes.unb.br/lasp/files/events/ICASSP2014/papers/p7014-dieleman.pdf

https://redes.unb.br/lasp/files/events/ICASSP2014/papers/p7014-dieleman.pdf


  

Deep Learning

To evaluate the predictions, was computed the area under the ROC 
curve (AUC) for each tag and computed the average across all 50 
tags.



  

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

ROC

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


  

Shown that the networks are able to learn useful features 
from raw audio: they are able to autonomously discover 
frequency decompositions.



  

Deep Learning

https://arxiv.org/pdf/1609.04243.pdf

https://arxiv.org/pdf/1609.04243.pdf


  

Deep Learning



  

- Overfitting

- Not optimized (slow)



  

Deep Learning



  

Deep Learning



  

Deep Learning



  

https://arxiv.org/ftp/arxiv/papers/1703/1703.05390.pdf

https://arxiv.org/ftp/arxiv/papers/1703/1703.05390.pdf


  



  

For all networks,the input is assumed to be of 
size 96×1366 (mel-frequency band × time frame) 
and single channel.



  

Deep Learning



  

Deep Learning

http://benanne.github.io/2014/08/05/spotify-cnns.html

http://benanne.github.io/2014/08/05/spotify-cnns.html


  

VGG



  

SqueezeNet



  

SqueezeNet



  

Keyword recognition results achieve 45% relative improvement 
with respect to a competitive Hidden Markov Model-based 
system.

https://static.googleusercontent.com/media/research.google.com/en//pubs/arc
hive/42537.pdf

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42537.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42537.pdf


  

User identification



  

User identification

FaceNet

https://arxiv.org/pdf/1503.03832.pdf

Center loss

https://arxiv.org/pdf/1707.07391.pdf

https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1707.07391.pdf


  

Center loss



  

Triplet loss

https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78

https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78


  



  



  

● https://redes.unb.br/lasp/files/events/ICASSP2014/papers/p7014-dieleman.pdf

● http://benanne.github.io/2014/08/05/spotify-cnns.html

● https://arxiv.org/pdf/1609.04243.pdf

● https://arxiv.org/pdf/1606.00298.pdf

● https://github.com/keunwoochoi/music-auto_tagging-keras

● http://aqibsaeed.github.io/2016-09-03-urban-sound-classification-part-1/

● https://github.com/aqibsaeed/Urban-Sound-Classification

● https://arxiv.org/ftp/arxiv/papers/1703/1703.05390.pdf

https://redes.unb.br/lasp/files/events/ICASSP2014/papers/p7014-dieleman.pdf
http://benanne.github.io/2014/08/05/spotify-cnns.html
https://arxiv.org/pdf/1609.04243.pdf
https://arxiv.org/pdf/1606.00298.pdf
https://github.com/keunwoochoi/music-auto_tagging-keras
http://aqibsaeed.github.io/2016-09-03-urban-sound-classification-part-1/
https://github.com/aqibsaeed/Urban-Sound-Classification
https://arxiv.org/ftp/arxiv/papers/1703/1703.05390.pdf


  

Facebook
https://www.facebook.com/neverdraw

LinkedIn
https://www.linkedin.com/in/awesomengineer

Github
https://github.com/spaceuniverse

https://www.facebook.com/neverdraw
https://www.linkedin.com/in/awesomengineer
https://github.com/spaceuniverse
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