Deep learning in audio research

Igor Kostiuk | 2017

What's the plan?

- Tasks for AI
- Data and where to find it
- Which data is better
- NN architecture comparison
- Links

Audio related AI tasks

- music auto tagging
- urban sound classification
- keyword spotting
- user identification
- etc.
 - \rightarrow in recommender system engines
 - \rightarrow in smart phones to detect the environment
 - \rightarrow in smart house systems

Deep Learning approach

Predicting listening preferences from audio signals by training a regression model to predict the latent representations of songs that were obtained from a collaborative filtering model.

🖿 101 - Dog
🖿 102 - Rooster
🖿 103 - Pig
🖿 104 - Cow
🖿 105 - Frog
🖿 106 - Cat
🖿 107 - Hen
108 - Insects
🖿 109 - Sheep
🖿 110 - Crow
🖿 201 - Rain
202 - Sea waves
203 - Crackling fire
204 - Crickets
205 - Chirping birds
206 - Water drops
207 - Wind
208 - Pouring water
209 - Toilet flush
210 - Thunderstorm
301 - Crying baby
302 - Sneezing

https://github.com/karoldvl/ESC-50

https://serv.cusp.nyu.edu/projects/urbansound dataset/urbansound8k.html

https://labrosa.ee.columbia.edu/millionsong/

https://en.wikipedia.org/wiki/List_of_datasets _for_machine_learning_research#Sound_data The **ESC-50** dataset is a public labeled set of 2000 environmental recordings (50 classes, 40 clips per class, 5 seconds per clip) suitable for environmental sound classification tasks.

Animals

- 101 Dog
- 102 Rooster
- 103 Pig
- 104 Cow
- 105 Frog
- 106 Cat
- 107 Hen
- 108 Insects (flying)
- 109 Sheep
- 110 Crow

The Echo Nest Taste Profile Subset

http://labrosa.ee.columbia.edu/millionsong/tasteprofile

b80344d063b5ccb3212f76538f3d9e43d87dca9e b80344d063b5ccb3212f76538f3d9e43d87dca9e b80344d063b5ccb3212f76538f3d9e43d87dca9e b80344d063b5ccb3212f76538f3d9e43d87dca9e b80344d063b5ccb3212f76538f3d9e43d87dca9e b80344d063b5ccb3212f76538f3d9e43d87dca9e b80344d063b5ccb3212f76538f3d9e43d87dca9e b80344d063b5ccb3212f76538f3d9e43d87dca9e b80344d063b5ccb3212f76538f3d9e43d87dca9e

 SOBSUJE12A6D4F8CF5
 2

 SOBVFZR12A6D4F8AE3
 1

 SOBXALG12A8C13C108
 1

 SOBXHDL12A81C204C0
 1

 SOBYHAJ12A6701BF1D
 1

 SOCNMUH12A6D4F6E6D
 1

 SODACBL12A8C13C273
 1

 SODDNQT12A6D4F5F7E
 5

Taste Profile subset is big. Some numbers:

1,019,318 unique users 384,546 unique MSD songs 48,373,586 user - song - play count triplets

<u>Data retrieval</u>

https://www.7digital.com/

We are able to attain 29 second audio clips for over 99% of the dataset.

Original dataset has no raw audio, only precomputed, badly documented features.

Sample rate	Quality level
11,025 Hz	Poor AM radio (low-end multimedia)
22,050 Hz	Near FM radio (high-end multimedia)
32,000 Hz	Better than FM radio (standard broadcast rate)
44,100 Hz	CD
48,000 Hz	Standard DVD
96,000 Hz	High-end DVD

A mel-spectrograms is a kind of time-frequency representation.

It is obtained from an audio signal by computing the Fourier transforms of short, overlapping windows.

Each of these Fourier transforms constitutes a frame. These successive frames are then concatenated into a matrix to form the spectrogram.

Finally, the frequency axis is changed from a linear scale to a mel scale to reduce the dimensionality, and the magnitudes are scaled logarithmically.

spectrograms

MFCC s are commonly derived as follows:

- Take the Fourier transform of (a windowed excerpt of) a signal.
- Map the powers of the spectrum obtained above onto the mel scale, using triangular overlapping windows.
- Take the logs of the powers at each of the mel frequencies.
- Take the discrete cosine transform of the list of mel log powers, as if it were a signal.
- The MFCCs are the amplitudes of the resulting spectrum.

LibROSA

https://librosa.github.io/librosa/

python_speech_features

https://github.com/jameslyons/python_speech_features

More:

https://github.com/tyiannak/pyAudioAnalysis

https://github.com/naxingyu/opensmile

kapre https://github.com/keunwoochoi/kapre

Mel-spectrograms

series = np.sin(time)

filename = "The Prodigy - Invaders Must Die.mp3"
filename = "Lady GaGa - Poker Face.mp3"

img_18.png

img_19.png

img_20.png

img_21.png

img_22.png

img_23.png

img_24.png

img_25.png

img_26.png

img_27.png

img_28.png

img_29.png

img_30.png

img_31.png

img_32.png

img_33.png

img_34.png

img_35.png

img_data_3_9.png

img_46.png

img_data_2_91.pn g

img_40.png

https://redes.unb.br/lasp/files/events/ICASSP2014/papers/p7014-dieleman.pdf

To evaluate the predictions, was computed the area under the ROC curve (AUC) for each tag and computed the average across all 50 tags.

length	stride	AUC (spectrograms)	AUC (raw audio)
1024	1024	0.8690	0.8366
1024	512	0.8726	0.8365
512	512	0.8793	0.8386
512	256	0.8793	0.8408
256	256	0.8815	0.8487

ROC

			all-the and a second se
in the second second second		a frequencial and the state of	
		physics of the stand	m.h. with the the
	with the state of		

Fig. 3. A subset of filters learned in the lowest layer of a convolutional neural network that processes raw audio signals,

Shown that the networks are able to learn useful features from raw audio: they are able to autonomously discover frequency decompositions.

- Overfitting
- Not optimized (slow)

Windowed time-domain waveform

Duration: T seconds

Û

Per-channel normalized mel-spectrograms

Û

Convolution layer Number of filters: N_C Filter sizes: L_T × L_F Strides: (S_T,S_F)

Ū

Recurrent layers Number of layers: R Number of hidden units: N_R

₽

Fully-connected layer Number of units: N_F

먓

Softmax

Figure 1: End-to-end CRNN architecture for KWS.

https://arxiv.org/ftp/arxiv/papers/1703/1703.05390.pdf

Convolutional		Recurrent		FC	Total number of	FRR (%) for the noise development set with 5 dB SNR			
N_C	(L_T, L_F)	(S_T, S_F)	R	N_R	Recurrent unit	N _F	parameters	at 1 FA/hour	at 0.5 FA/hour
32	(20,5)	(8,2)	2	8	GRU	32	45k	5.54	7.44
32	(20,5)	(8,2)	3	8	LSTM	64	68k	6.17	7.68
32	(5,1)	(4,1)	2	8	GRU	64	102k	6.04	7.31
32	(20,5)	(8,2)	2	16	GRU	64	110k	3.48	4.46
32	(20,5)	(20,5)	2	32	GRU	64	110k	5.70	7.99
32	(20,5)	(8,2)	3	16	GRU	64	115k	3.42	4.10
16	(20,5)	(8,2)	2	32	GRU	32	127k	3.53	5.55
32	(20,5)	(12,4)	2	32	GRU	64	143k	5.80	7.72
16	(20,5)	(8,2)	1	32	GRU	64	148k	4.20	6.27
128	(20,5)	(8,2)	3	8	GRU	32	159k	3.83	5.21
64	(10,3)	(8,2)	1	16	GRU	32	166k	3.21	4.31
128	(20,5)	(8,2)	1	32	LSTM	64	197k	3.37	4.56
32	(20,5)	(12,2)	2	32	GRU	64	205k	3.26	4.40
32	(20,5)	(8,2)	1	32	GRU	64	211k	3.00	3.84
32	(20,5)	(8,2)	2	32	GRU	64	229k	2.85	3.79
32	(40,10)	(8,2)	2	32	GRU	64	239k	3.57	5.03
32	(20,5)	(8,2)	3	32	GRU	64	248k	3.00	3.42
32	(20,5)	(8,2)	2	32	LSTM	64	279k	3.06	4.41
32	(20,5)	(8,1)	2	32	GRU	64	352k	2.23	3.31
64	(20,5)	(8,2)	2	32	GRU	64	355k	2.43	3.99
64	(20,5)	(8,2)	2	32	LSTM	32	407k	3.11	4.04
64	(10,3)	(4,1)	2	32	GRU	64	674k	3.37	4.35
128	(20,5)	(8,2)	2	32	GRU	128	686k	2.64	3.78
32	(20,5)	(8,2)	2	128	GRU	128	1513k	2.23	2.95
256	(20,5)	(8,2)	4	64	GRU	128	2551k	2.18	3.42
128	(20,5)	(4,1)	4	64	GRU	128	2850k	2.64	3.21

For all networks, the input is assumed to be of size 96×1366 (mel-frequency band × time frame) and single channel.

VGG

ConvNet Configuration									
Α	A-LRN	В	C	D	Е				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
	input (224×224 RGB image)								
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
		max	pool						
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
maxpool									
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
		max	pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
		max	pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
maxpool									
FC-4096									
FC-4096									
FC-1000									
soft-max									

Keyword recognition results achieve 45% relative improvement with respect to a competitive Hidden Markov Model-based system.

https://static.googleusercontent.com/media/research.google.com/en//pubs/arc hive/42537.pdf

User identification

User identification

FaceNet

https://arxiv.org/pdf/1503.03832.pdf

Center loss

https://arxiv.org/pdf/1707.07391.pdf

(a) softmax loss

(b) center loss

Center loss

$$L_c = \frac{1}{2} \sum_{i=1}^m \|x_i - c_{y_i}\|_2^2 \tag{1}$$

Where L_c denotes the center loss. m denotes the number of training samples in a min-batch. $x_i \in R_d$ denotes the *i*th training sample. y_i denotes the label of x_i . $c_{y_i} \in R_d$ denotes the y_i th class center of deep features. d is the feature dimension.

A single 'triplet' training step:

https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78

Figure 3. The **Triplet Loss** minimizes the distance between an *an*-*chor* and a *positive*, both of which have the same identity, and maximizes the distance between the *anchor* and a *negative* of a different identity.

The loss that is being minimized is then L =

$$\sum_{i=1}^{N} \left[\left\| f(x_{i}^{a}) - f(x_{i}^{p}) \right\|_{2}^{2} - \left\| f(x_{i}^{a}) - f(x_{i}^{n}) \right\|_{2}^{2} + \alpha \right]_{+}$$

- https://redes.unb.br/lasp/files/events/ICASSP2014/papers/p7014-dieleman.pdf
- http://benanne.github.io/2014/08/05/spotify-cnns.html
- https://arxiv.org/pdf/1609.04243.pdf
- https://arxiv.org/pdf/1606.00298.pdf
- https://github.com/keunwoochoi/music-auto_tagging-keras
- http://aqibsaeed.github.io/2016-09-03-urban-sound-classification-part-1/
- https://github.com/aqibsaeed/Urban-Sound-Classification
- https://arxiv.org/ftp/arxiv/papers/1703/1703.05390.pdf

Facebook https://www.facebook.com/neverdraw

LinkedIn https://www.linkedin.com/in/awesomengineer

Github https://github.com/spaceuniverse

