
Recent advances 
in applied chatbot technology

to be presented at AI Ukraine 2017

Jordi Carrera Ventura

NLP scientist


Telefónica Research & Development



Outline
Overview 

Industrial state-of-the-art 

Current challenges 

Recent advances 

Conclusions 



Overview



Chatbots are a form of conversational artificial intelligence (AI) in which a 
user interacts with a virtual agent through natural language messaging in
• a messaging interface like Slack or Facebook Messenger
• or a voice interface like Amazon Echo or Google Assistant.

Chatbot1

A bot that lives in a chat (an automation routine inside a UI).

Conversational agent

Virtual Assistant1

A bot that takes natural language as input and returns it as output.

Chatbot2

A virtual assistant that lives in a chat.

User> what are you?

1 Generally assumed to have broader coverage and more advanced AI than chatbots2.



Usually intended to
• get quick answers to a specific questions over some pre-defined 

repository of knowledge
• perform transactions in a faster and more natural way.

Can be used to
• surface contextually relevant information
• help a user complete an online transaction
• serve as a helpdesk agent to resolve a customer’s issue without ever 

involving a human.

Virtual assistants for
Customer support, e-commerce, expense management, booking flights, 
booking meetings, data science...

Use cases



What's really important...
Conversational technology should really be about


• dynamically finding the best possible way to browse a large 
repository of information/actions.


• find the shortest path to any relevant action or piece of information 
(to avoid the plane dashboard effect).


• surfacing implicit data in unstructured content ("bocadillo de 
calamares in Madrid"). Rather than going open-domain, taking the 
closed-domain and going deep into it.



What's really important...
Conversational technology should really be about


• dynamically finding the best possible way to browse a large 
repository of information/actions.


• find the shortest path to any relevant action or piece of information 
(to avoid the plane dashboard effect).


• surfacing implicit data in unstructured content ("bocadillo de 
calamares in Madrid"). Rather than going open-domain, taking the 
closed-domain and going deep into it.



... and the hype



... and the hype



... and the hype



... and the hype



... and the hype



... and the hype



... and the hype



... and the hype



... and the hype

That was IBM Watson 🙄



Industrial state-of-the-art



Lack of suitable metrics

Industrial state-of-the-art

Liu, Chia-Wei, et al. "How NOT to evaluate your dialogue system: An empirical study of 
unsupervised evaluation metrics for dialogue response generation." arXiv preprint arXiv:

1603.08023 (2016).



By Intento (https://inten.to)

Dataset
SNIPS.ai 2017 NLU Benchmark
https://github.com/snipsco/nlu-benchmark

Example intents

SearchCreativeWork (e.g. Find me the I, Robot television show)
GetWeather (e.g. Is it windy in Boston, MA right now?)
BookRestaurant (e.g. I want to book a highly rated restaurant for me and my boyfriend 
tomorrow night)
PlayMusic (e.g. Play the last track from Beyoncé off Spotify)
AddToPlaylist (e.g. Add Diamonds to my roadtrip playlist)
RateBook (e.g. Give 6 stars to Of Mice and Men)
SearchScreeningEvent (e.g. Check the showtimes for Wonder Woman in Paris)

Industrial state-of-the-art
Benchmark

https://inten.to
https://github.com/snipsco/nlu-benchmark


Methodology

English language.
Removed duplicates that differ by number of whitespaces, quotes, lettercase, 
etc.

Resulting dataset parameters
7 intents, 15.6K utterances (~2K per intent)

3-fold 80/20 cross-validation.

Most providers do not offer programmatic interfaces for adding training data.

Industrial state-of-the-art
Benchmark



Framework Since F1 False 
positives

Response 
time Price

IBM Watson 
Conversation 2015 99.7 100% 0.35 2.5

API.ai (Google 2016) 2010 99.6 40% 0.28 Free

Microsoft LUIS 2015 99.2 100% 0.21 0.75

Amazon Lex 2016 96.5 82% 0.43 0.75

Recast.ai 2016 97 75% 2.06 N/A

wit.ai (Facebook) 2013 97.4 72% 0.96 Free

SNIPS 2017 97.5 26% 0.36 Per device

Industrial state-of-the-art



Logarithmic scale!



Current challenges



So, let's be real...
Welcome to Macy's blah-blah... !

hi im a guy looking for leda jackets

We've got what you're looking for! 
<image product_id=1 item_id=1>

that's a nice one but, i want to see 
different jackets .... how can i do that



So, let's be real...
We've got what you're looking for! 
<image product_id=1 item_id=2>

where can i find a pair of shoes that 
match this yak etc.

We've got what you're looking for! 
<image product_id=1 item_id=3>

pair of shoes 
(, you talking dishwasher)



So, let's be real...
Welcome to Macy's blah-blah... !

hi im a guy looking for leda jackets

lexical variants: 
synonyms, paraphrases



So, let's be real...
lexical variants: 

synonyms, paraphrases

Intent



So, let's be real...
lexical variants: 

synonyms, paraphrases

Intent

Entity



So, let's be real...
lexical variants: 

synonyms, paraphrases

Intent

This can be normalized, e.g. 
regular expressions 

Entity



So, let's be real...
lexical variants: 

synonyms, paraphrases

Intent

This can also be normalized, 
e.g. regular expressions 

Entity



So, let's be real...
lexical variants: 

synonyms, paraphrases

Intent

This can also be normalized, 
e.g. regular expressions 

Entity

1-week project on a regular-expression-based filter. 

From 89% to 95% F1 with only a 5% positive rate. 

7-label domain classification task using a 
RandomForest classifier over TFIDF-weighted vectors.



So, let's be real...
lexical variants: 

synonyms, paraphrases

Intent

This can also be normalized, 
e.g. regular expressions 

Entity

Vs. proposal to handle e.g. negation 
as a bi-gram/tri-gram feature engineering problem. 

Preferably over a normalized feature space 
(can't watch tv, cannot watch cable > RB-neg watch TV)



So, let's be real...
lexical variants: 

synonyms, paraphrases

Intent

This can also be normalized, 
e.g. regular expressions 

Entity

Arguably, providers should be doing it. 

All the frameworks currently available on the market 
force the user to do the work explicitly.



So, let's be real...
lexical variants: 

synonyms, paraphrases

Intent My internet connection does not work.
My smartphone does not work.
My landline does not work.
My router does not work.
My SIM does not work.
My payment method does not work.
My saved movies does not work.



So, let's be real...
lexical variants: 

synonyms, paraphrases

Intent My internet connection does not work.
My smartphone does not work.
My landline does not work.
My router does not work.
My SIM does not work.
My payment method does not work.
My saved movies does not work.

ConnectionDebugWizard(*)
TechnicalSupport(Mobile)
TechnicalSupport(Landline)
RouterDebugWizard()
VerifyDeviceSettings
AccountVerificationProcess
TVDebugWizard



So, let's be real...
lexical variants: 

synonyms, paraphrases

Intent My internet connection does not work.
My smartphone does not work.
My landline does not work.
My router does not work.
My SIM does not work.
My payment method does not work.
My saved movies does not work.

ConnectionDebugWizard(*)
TechnicalSupport(Mobile)
TechnicalSupport(Landline)
RouterDebugWizard()
VerifyDeviceSettings
AccountVerificationProcess
TVDebugWizard

Since we associate each intent to an action,

the ability to discriminate actions presupposes 

training as many separate intents,

with just as many ambiguities.



So, let's be real...
lexical variants: 

synonyms, paraphrases

Intent My internet connection does not work.
My smartphone does not work.
My landline does not work.
My router does not work.
My SIM does not work.
My payment method does not work.
My saved movies does not work.

ConnectionDebugWizard(*)
TechnicalSupport(Mobile)
TechnicalSupport(Landline)
RouterDebugWizard()
VerifyDeviceSettings
AccountVerificationProcess
TVDebugWizard

It also presupposes exponentially increasing 
amounts of training data as we add


higher-precision entities to our model

(every entity * every intent that applies)



So, let's be real...
lexical variants: 

synonyms, paraphrases

Intent My internet connection does not work.
My smartphone does not work.
My landline does not work.
My router does not work.
My SIM does not work.
My payment method does not work.
My saved movies does not work.

ConnectionDebugWizard(*)
TechnicalSupport(Mobile)
TechnicalSupport(Landline)
RouterDebugWizard()
VerifyDeviceSettings
AccountVerificationProcess
TVDebugWizard

The entity resolution step (which would have helped 
us make the right decision) is nested downstream in 

our pipeline.


Any errors from the previous stage

will propagate down.



So, let's be real...
Welcome to Macy's blah-blah... !

hi im a guy looking for leda jackets

We've got what you're looking for! 
<image product_id=1 item_id=1>

that's a nice one but, I want to see 
different jackets .... how can i do that

lexical variants: 
synonyms, paraphrases formal variants 

(typos, ASR errors)

multiword 
chunking/parsing

morphological 
variants



So, let's be real...
Welcome to Macy's blah-blah... !

hi im a guy looking for leda jackets

We've got what you're looking for! 
<image product_id=1 item_id=1>

lexical variants: 
synonyms, paraphrases formal variants 

(typos, ASR errors)

multiword 
chunking/parsing

morphological 
variants

entity recognition

hey i need to buy a men's red leather 
jacket with straps for my friend

that's a nice one but, I want to see 
different jackets .... how can i do that



So, let's be real...
where can i find a <jacket with straps>

looking for a <black mens jacket>

do you have anything in <leather>

<present> for a friend

}Our training

dataset

buy <red jacket>



So, let's be real...

where can i buy <a men's red leather 
jacket with straps> for my friend

where can i find a <jacket with straps>

looking for a <black mens jacket>

do you have anything in <leather>

<present> for a friend

hi i need <a men's red leather jacket with 
straps> that my friend can wear

}Our training

dataset

} Predictions

at runtime

buy <red jacket>



So, let's be real...

where can i buy <a men's red leather 
jacket with straps> for my friend

where can i find a <jacket with straps>

looking for a <black mens jacket>

do you have anything in <leather>

<present> for a friend

hi i need <a men's red leather jacket with 
straps> that my friend can wear

}Our training

dataset

} Predictions

at runtime

Incomplete training data

will cause


entity segmentation issues


buy <red jacket>



So, let's be real...
buy <red jacket>

where can i find a <jacket with straps>

looking for a <black mens jacket>

do you have anything in <leather>

<present> for a friend

}Our training

dataset

But more importantly, in the intent-entity

paradigm we are usually unable to train two

entity types with the same distribution:


where can i buy a <red leather jacket>

where can i buy a <red leather wallet>

jacket, 0.5

wallet, 0.5

jacket, 0.5

wallet, 0.5



So, let's be real...
buy <red jacket>

where can i find a <jacket with straps>

looking for a <black mens jacket>

do you have anything in <leather>

<present> for a friend

}Our training

dataset

... and have no way of detecting entities

used in isolation:


pair of shoes

MakePurchase

ReturnPurchase
['START', 3-gram, 'END']

GetWeather

Greeting

Goodbye



that's a nice one but, I want to see 
different jackets .... how can i do that

So, let's be real...
Welcome to Macy's blah-blah... !

hi im a guy looking for leda jackets

We've got what you're looking for! 
<image product_id=1 item_id=1>

lexical variants: 
synonyms, paraphrases formal variants 

(typos, ASR errors)

multiword 
chunking/parsing

morphological 
variants

entity recognition

hey i need to buy a men's red leather 
jacket with straps for my friend

searchItemByText("leather jacket") 

searchItemByText( 
    "to buy a men's ... pfff TLDR... my friend" 
) 

[ 
{ "name": "leather jacket", 
  "product_category_id": 12, 
  "gender_id": 0, 
  "materials_id": [68, 34, ...], 
  "features_id": [], 
}, 
... 
{ "name": "leather jacket with straps", 
  "product_category_id": 12, 
  "gender_id": 1, 
  "materials_id": [68, 34, ...], 
  "features_id": [8754], 
}, 

]



that's a nice one but, I want to see 
different jackets .... how can i do that

So, let's be real...
Welcome to Macy's blah-blah... !

hi im a guy looking for leda jackets

We've got what you're looking for! 
<image product_id=1 item_id=1>

lexical variants: 
synonyms, paraphrases formal variants 

(typos, ASR errors)

multiword 
chunking/parsing

morphological 
variants

entity recognition

hey i need to buy a men's red leather 
jacket with straps for my friend

searchItemByText("leather jacket") 

searchItemByText( 
    "red leather jacket with straps" 
) 

[ 
{ "name": "leather jacket", 
  "product_category_id": 12, 
  "gender_id": 0, 
  "materials_id": [68, 34, ...], 
  "features_id": [], 
}, 
... 
{ "name": "leather jacket with straps", 
  "product_category_id": 12, 
  "gender_id": 1, 
  "materials_id": [68, 34, ...], 
  "features_id": [8754], 
}, 

]

NO IDs, 

NO reasonable expectation of a 
cognitively realistic answer and 

NO "conversational technology".



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

Straps Jackets

Leather items

Since the conditions express 
an AND logical operator and 
we will search for an item 
fulfilling all of them, we could 
actually search for the terms in 
the conjunction in any order.



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

Given

• any known word, denoted by w, 

• the vocabulary V of all known words, such that wi ∈ V for any i,

• search space D, where d denotes every document in a collection D 

such that d ∈ D and d = {wi, wi + 1, ..., wn}, such that wi ≤ x ≤ n ∈ V, 
• a function filter(D, wx) that returns a subset of D, Dwx where wx ∈ d 

is true for every d: d ∈ Dwx, and 
• query q = {"men's", 'red', 'leather', 'jacket', 'straps'},



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

do filter(filter(filter(filter(

    filter(D, 'leather'), 'straps'), "men's"), 'jacket'),'red' 
)   =


do filter(filter(filter(filter(

    filter(D, 'straps'), 'red'), 'jacket'), 'leather'),"men's" 
)   =


do filter(filter(filter(filter(

    filter(D, "men's"), 'leather'), 'red'), 'straps'),'jacket' 
)   =




So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

Given query q = {"men's", 'red', 'leather', 'jacket', 'straps'},

find the x: x ∈ q that satisfies:


containsSubstring(x, 'leather') ^ 

containsSubstring(x, 'straps') ^

...

containsSubstring(x, "men's")

As a result, it will lack the notion of what counts as a partial match.

We cannot use more complex predicates because, in this scenario, the 
system has no understanding of the internal structure of the phrase, its 
semantic dependencies, or its syntactic dependencies.



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

The following partial matches will be

virtually indistinguishable:


• leather straps for men's watches (3/5)


• men's vintage red leather shoes (3/5)


• red wallet with leather straps (3/5)


• red leather jackets with hood (3/5)



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

do filter(filter(filter(filter(

    filter(D, "men's"), 'red'), 'leather'), 'jacket'),'straps' 
)


Given

• any known word, denoted by w, 

• the vocabulary V of all known words, such that wi ∈ V for any i,

• search space D, where d denotes every document in a collection D 

such that d ∈ D and d = {wi, wi + 1, ..., wn}, such that wi ≤ x ≤ n ∈ V, 
• a function filter(D, wx) that returns a subset of D, Dwx where wx ∈ d is 

true for every d: d ∈ Dwx, and 
• query q = {"men's", 'red', 'leather', 'jacket', 'straps'},

This is our problem:  
we're using a function  

that treats equally every wx.



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

do filter(filter(filter(filter(

    filter(D, "men's"), 'red'), 'leather'), 'jacket'),'straps' 
)


Given

• any known word, denoted by w, 

• the vocabulary V of all known words, such that wi ∈ V for any i,

• search space D, where d denotes every document in a collection D 

such that d ∈ D and d = {wi, wi + 1, ..., wn}, such that wi ≤ x ≤ n ∈ V, 
• a function filter(D, wx) that returns a subset of D, Dwx where wx ∈ d is 

true for every d: d ∈ Dwx, and 
• query q = {"men's", 'red', 'leather', 'jacket', 'straps'},

We need a function with at least one 
additional parameter, rx 

filter(D, wx, rx) 

where 

rx denotes the depth at which the 
dependency tree headed by wx  
attaches to the node being 
currently evaluated. 



So, let's be real...
Your query 
i need to buy a men's red leather jacket with straps for my friend 

Tagging 
i/FW need/VBP to/TO buy/VB a/DT men/NNS 's/POS red/JJ leather/NN jacket/NN with/IN straps/
NNS for/IN my/PRP$ friend/NN

Parse 
(ROOT
  (S
    (NP (FW i))
    (VP (VBP need)
      (S
        (VP (TO to)
          (VP (VB buy)
            (NP
              (NP (DT a) (NNS men) (POS 's))
              (JJ red) (NN leather) (NN jacket))
            (PP (IN with)
              (NP
                (NP (NNS straps))
                (PP (IN for)
                  (NP (PRP$ my) (NN friend)))))))))))

http://nlp.stanford.edu:8080/parser/index.jsp (as of September 19th 2017)



So, let's be real...
Your query 
i need to buy a men's red leather jacket with straps for my friend 

Tagging 
i/FW need/VBP to/TO buy/VB a/DT men/NNS 's/POS red/JJ leather/NN jacket/NN with/IN straps/
NNS for/IN my/PRP$ friend/NN

Parse 
(ROOT
  (S
    (NP (FW i))
    (VP (VBP need)
      (S
        (VP (TO to)
          (VP (VB buy)
            (NP
              (NP (DT a) ((NNS men) (POS 's))
              ((JJ red) (NN leather)) (NN jacket)))
            (PP (IN with)
              (NP
                (NP (NNS straps))
            (PP (IN for)
              (NP (PRP$ my) (NN friend)))))))))))

http://nlp.stanford.edu:8080/parser/index.jsp (as of September 19th 2017)



So, let's be real...
Your query 
i need to buy a men's red leather jacket with straps for my friend 

Tagging 
i/FW need/VBP to/TO buy/VB a/DT men/NNS 's/POS red/JJ leather/NN jacket/NN with/IN straps/
NNS for/IN my/PRP$ friend/NN

Parse 
(ROOT
  (S
    (NP (FW i))
    (VP (VBP need)
      (S
        (VP (TO to)
          (VP (VB buy)
            (NP
              (NP (DT a) ((NNS men) (POS 's))
              ((JJ red) (NN leather)) (NN jacket)))
            (PP (IN with)
              (NP
                (NP (NNS straps))
            (PP (IN for)
              (NP (PRP$ my) (NN friend)))))))))))

http://nlp.stanford.edu:8080/parser/index.jsp (as of September 19th 2017)

(red, leather)


(leather, jacket)


(jacket, buy)




So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

do filter(filter(filter(filter(

    filter(D, "men's"), 'red'), 'leather'), 'jacket'),'straps' 
)


Given

• any known word, denoted by w, 

• the vocabulary V of all known words, such that wi ∈ V for any i,

• search space D, where d denotes every document in a collection D 

such that d ∈ D and d = {wi, wi + 1, ..., wn}, such that wi ≤ x ≤ n ∈ V, 
• a function filter(D, wx) that returns a subset of D, Dwx where wx ∈ d is 

true for every d: d ∈ Dwx, and 
• query q = {"men's", 'red', 'leather', 'jacket', 'straps'},

The output of this function  
will no longer be a subset of  
search results but a ranked list. 

This list can be naively ranked by 

 ∑x|t| (1 / rx) 

although much more advanced 
scoring functions can be used. 



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

Given: 
q: "red leather jacket" 
a1: "black leather jacket" 
a2: "red leather wallet"



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

>>> t1 = dependencyTree(a1) 
>>> t1.depth("black") 
3 
>>> t1.depth("jacket") 
1 

Given: 
q: "red leather jacket" 
a1: "black leather jacket" 
a2: "red leather wallet"



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

>>> results = filter(D, "jacket", t1.depth("jacket")) 
>>> results 
[  ( Jacket1, 1.0 ), 
   ( Jacket2, 1.0 ), 

..., 
   ( Jacketn, 1.0 ) 
] 

Given: 
q: "red leather jacket" 
a1: "black leather jacket" 
a2: "red leather wallet"



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

>>> results = filter(results, "leather", t1.depth("leather")) 
>>> results 
[  ( Jacket1, 1.5 ), 
   ( Jacket2, 1.5 ), 

..., 
   ( Jacketn - x, 1.5 ) 
] 

Given: 
q: "red leather jacket" 
a1: "black leather jacket" 
a2: "red leather wallet"



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

Given: 
q: "red leather jacket" 
a1: "black leather jacket" 
a2: "red leather wallet"

>>> results = filter(results, "red", t1.depth("red")) 
>>> results 
[  ( Jacket1, 1.5 ), 
   ( Jacket2, 1.5 ), 

..., 
   ( Jacketn - x, 1.5 ) 
] 



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

>>> t2 = dependencyTree(a2) 
>>> t2.depth("red") 
3 
>>> t2.depth("jacket") 
None 

Given: 
q: "red leather jacket" 
a1: "black leather jacket" 
a2: "red leather wallet"



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

>>> results = filter(D, "jacket", t2.depth("jacket")) 
>>> results 
[] 

Given: 
q: "red leather jacket" 
a1: "black leather jacket" 
a2: "red leather wallet"



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

>>> results = filter(results, "leather", t2.depth("leather")) 
>>> results 
[  ( Wallet1, 0.5 ), 
   ( Wallet2, 0.5 ), 

..., 
   ( Strapn, 0.5 ) 
] 

Given: 
q: "red leather jacket" 
a1: "black leather jacket" 
a2: "red leather wallet"



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

Given: 
q: "red leather jacket" 
a1: "black leather jacket" 
a2: "red leather wallet"

>>> results = filter(results, "red", t2.depth("red")) 
>>> results 
[  ( Wallet1, 0.83 ), 
   ( Wallet2, 0.83 ), 

..., 
   ( Strapn - x, 0.83 ) 
] 



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

Results for q2: 
"red leather wallet" 

[  ( Wallet1, 0.83 ), 
   ( Wallet2, 0.83 ), 

..., 
   ( Strapn - x, 0.83 ) 
] 

Results for q1: 
"black leather jacket" 

[  ( Jacket1, 1.5 ), 
   ( Jacket2, 1.5 ), 

..., 
   ( Jacketn - x, 1.5 ) 
] 



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

However, the dependency tree is not always available, and it 
often contains parsing issues (cf. Stanford parser output).

An evaluation of parser robustness over noisy input reports 
performances down to an average of 80% across datasets and 
parsers.

Hashemi, Homa B., and Rebecca Hwa. "An Evaluation of Parser Robustness 
for Ungrammatical Sentences." EMNLP. 2016.



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

In order to make this decision

[ [red leather] jacket ]👍



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

[ [red leather] jacket ]
[ red [leather jacket] ]👍

In order to make this decision



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

[ [red leather] jacket ]
[ red [leather jacket] ]
[ men's [leather jacket] ]👍

In order to make this decision



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

[ [red leather] jacket ]
[ red [leather jacket] ]
[ men's [leather jacket] ]

😱

In order to make this decision

[ [men's leather] jacket ]



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

[ [red leather] jacket ]
[ red [leather jacket] ]
[ men's [leather jacket] ]
[ [men's leather] jacket ]😱

In order to make this decision

... the parser already needs as 
much information as we can 
provide regarding head-modifier 
attachments.



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

[ [red leather] jacket ]
[ red [leather jacket] ]

[ men's [leather jacket] ]
[ [men's leather] jacket ]

In order to make this decision

2 2 1
2 1 1

2 1 1
2 2 1



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

In order to make this decision

Same pattern, different score. How to assign a probability such 
that less plausible results are buried at the bottom of the 
hypotheses space? (not only for display purposes, but for 
dynamic programming reasons)

[ [red leather] jacket ]
[ red [leather jacket] ]

[ men's [leather jacket] ]
[ [men's leather] jacket ]

2 2 1
2 1 1

2 1 1
2 2 1



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

In order to make this decision

p(red | jacket )  ~
p(red | leather )

p(men's | jacket )   >

[ [red leather] jacket ]
[ red [leather jacket] ]

[ men's [leather jacket] ]
[ [men's leather] jacket ]

2 2 1
2 1 1

2 1 1
2 2 1 p(men's | leather )



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

That's a lot of data to model. Where will we get it from?

[ [red leather] jacket ]
[ red [leather jacket] ]

[ men's [leather jacket] ]
[ [men's leather] jacket ]

2 2 1
2 1 1

2 1 1
2 2 1



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

That's a lot of data to model. Where will we get it from?

p(Color | ClothingItem )  ~
p(Color | Material )

p(Person | ClothingItem )   >

[ [red leather] jacket ]
[ red [leather jacket] ]

[ men's [leather jacket] ]
[ [men's leather] jacket ]

2 2 1
2 1 1

2 1 1
2 2 1 p(Person | Material )



So, let's be real...
hey i need to buy a men's red leather 

jacket with straps for my friend

If our taxonomy is well built, semantic associations
acquired for a significant number of members of each

class will propagate to new, unseen members of that class.

With a sufficiently rich NER detection pipeline and a semantic
relation database large enough, we can rely on simple inference

for a vast majority of the disambiguations.

More importantly, we can weight candidate hypotheses 
dynamically in order to make semantic parsing tractable over 

many possible syntactic trees.



So, let's be real...
Welcome to Macy's blah-blah... !

hi im a guy looking for leda jackets

We've got what you're looking for! 
<image product_id=1 item_id=1>

that's a nice one but, I want to see 
different jackets .... how can i do that

lexical variants: 
synonyms, paraphrases formal variants 

(typos, ASR errors)

multiword 
chunking/parsing

morphological 
variants

entity recognition

entity linking

hierarchical structure



So, let's be real...

QualitativeEvaluation(Useru, ClothingItemi)

BrowseCatalogue(Useru, filter=[ClothingItemn, j |J|])

HowTo(Useru, Commandc|Context|)
}A single utterance

that's a nice one but, i want to see 
different jackets .... how can i do that



So, let's be real...

}A single utterance

QualitativeEvaluation(Useru, ClothingItemi)

BrowseCatalogue(Useru, filter=[ClothingItemn, j |J|])

HowTo(Useru, Commandc|Context|)

that's a nice one but, i want to see 
different jackets .... how can i do that



So, let's be real...

}random.choice(I)

   x if x ∈ I ^  
        length(x) = argmax(L)

I = [ i1, i2, i3 ]

L = [ | i1 |,  | i2 |,  | i3 | ]

P = [ p( i1 ), p( i2 ), p( i3 )]

   x if x ∈ I ^  
        p(x) = argmax(P)

QualitativeEvaluation(Useru, ClothingItemi)

BrowseCatalogue(Useru, filter=[ClothingItemn, j |J|])

HowTo(Useru, Commandc|Context|)

that's a nice one but, i want to see 
different jackets .... how can i do that



So, let's be real...

}
random.choice(I)

   x if x ∈ I ^  
        length(x) = argmax(L)

I = [ i1, i2, i3 ]

L = [ | i1 |,  | i2 |,  | i3 | ]

P = [  p( i1 | q ),  p( i2 | q ),   p( i3 | q )  ]

   x if x ∈ I ^  
        p(x | q) = argmax(P)

However, this approach will still suffer from 
segmentation issues due to passing many more 
arguments than expected for resolving any 
specific intent.

that's a nice one but, i want to see 
different jackets .... how can i do that



So, let's be real...

GetInfo(Useru, argmax(Commandc|Context| ) )

SetPreference(Useru, SetRating(ClothingItemi, k, 1) )

∀(ClothingItemn, m |N| |M| | n = i, k = * )}A standard API

will normally provide 
these definitions as 
the declaration of its 
methods.

that's a nice one but, i want to see 
different jackets .... how can i do that



So, let's be real...

GetInfo(Useru, argmax(Commandc|Context| ) )

SetPreference(Useru, SetRating(ClothingItemi, k, 1) )

∀(ClothingItemn, m |N| |M| | n = i, k = * )}We can map the 
argument signatures 
to the nodes of the 
taxonomy we are 
using for linguistic 
inference.

that's a nice one but, i want to see 
different jackets .... how can i do that



So, let's be real...

GetInfo(Useru, argmax(Commandc|Context| ) )

SetPreference(Useru, SetRating(ClothingItemi, k, 1) )

∀(ClothingItemn, m |N| |M| | n = i, k = * )}The system will then 
be able to link API 
calls to entity parses 
dynamically.

that's a nice one but, i want to see 
different jackets .... how can i do that



So, let's be real...

GetInfo(Useru, argmax(Commandc|Context| ) )

SetPreference(Useru, SetRating(ClothingItemi, k, 1) )

∀(ClothingItemn, m |N| |M| | n = i, k = * )}Over time, new 
methods added to 
the API will be 
automatically 
supported by the 
pre-existing linguistic 
engine.

that's a nice one but, i want to see 
different jackets .... how can i do that



So, let's be real...

GetInfo(Useru, argmax(Commandc|Context| ) )

SetPreference(Useru, SetRating(ClothingItemi, k, 1) )

∀(ClothingItemn, m |N| |M| | n = i, k = * )}Over time, new 
methods added to 
the API will be 
automatically 
supported by the 
pre-existing linguistic 
engine.

😁

that's a nice one but, i want to see 
different jackets .... how can i do that



So, let's be real...

If the system can reasonably solve

nested semantic dependencies hierarchically,


it can also be extended to handle multi-intent 
utterances in a natural way.



So, let's be real...

Convert to abstract entity types

Activate applicable 
dependencies/grammar rules


(fewer and less ambiguous 
thanks to the previous step)

i need to pay my bill and i cannot log into my account

i need to PAYMENT my INVOICE and i ISSUE ACCESS ACCOUNT

Resolve attachments and rank 
candidates by semantic association, 

keep top-n hypotheses

i need to [ PAYMENT my INVOICE ] and i [ ISSUE [ AccessAccount() ] ]

i need to [ Payment(x) ] and i [ Issue(y) ]



So, let's be real...

AND usually joins

ontologically coordinate elements,

e.g. books and magazines versus 

*humans and Donald Trump

i need to [ Payment(x) ] and i [ Issue(y) ]



So, let's be real...

Even if


 p0 = p( Payment | Issue )  >  u 

we will still split the intents because here we have


 py = p( Payment, x | Issue, y )


and normally  py  <  p0  for any irrelevant case (i.e., the posterior 
probability of the candidate attachment will not beat the baseline 
of its own prior probability)

i need to [ Payment(x) ] and i [ Issue(y) ]



So, let's be real...

I.e., Payment may have been attached to Issue if no other element had 
been attached to it before.


Resolution order, as given by attachment probabilities, matters.

i need to [ Payment(x) ] and i [ Issue(y) ]



So, let's be real...

i need to [ Payment(x) ] i [ Issue(y) ]

i need to [ Payment(x) ] and i [ Issue(y) ]

Multi-intents solved😎



So, let's be real...
no! forget the last thing i said

go back!

third option in the menu

i want to modify the address I gave you



So, let's be real...
We need:


• semantic association measures between the leaves of the tree in order 
to attach them to the right nodes and be able to stop growing a tree at 
the right level,


• a syntactic tree to build the dependencies, either using a parser or a 
PCFG/LFG grammar (both may take input from the previous step, 
which will provide the notion of verbal valence: Person Browse 
Product),


• for tied analyses, an interface with the user to request clarification.



Recent advances



Supersense inference
GFT (Google Fine-Grained) taxonomy

Yogatama, Dani, Daniel Gillick, and Nevena Lazic. "Embedding Methods for 
Fine Grained Entity Type Classification." ACL (2). 2015.



FIGER taxonomy

Yogatama, Dani, Daniel Gillick, and Nevena Lazic. "Embedding Methods for 
Fine Grained Entity Type Classification." ACL (2). 2015.

Supersense inference



for every position, term, tag tuple in TermExtractor3(s):

for every document d in D2:

FB = Freebase

owem = OurWordEmbeddingsModel

Yogatama, Dani, Daniel Gillick, and Nevena Lazic. "Embedding Methods for 
Fine Grained Entity Type Classification." ACL (2). 2015.

for every sent s in d:
sentence_vector = None

if not sentence_vector:
sentence_vector = vectorizeSentence(s, position)

owem[ T[tag] ].update( sentence_vector )

T = OurTaxonomy1

3 TermExtractor  =  parser + chunker + entity resolver that assigns Freebase types to entities.
2 D = 133,000 news documents.
1 FB labels are manually mapped to fine-grained labels.

Supersense inference



for every position, term, tag tuple in TermExtractor3(s):

for every document d in D2:

FB = Freebase

owem = OurWordEmbeddingsModel

Yogatama, Dani, Daniel Gillick, and Nevena Lazic. "Embedding Methods for 
Fine Grained Entity Type Classification." ACL (2). 2015.

for every sent s in d:
sentence_vector = None

if not sentence_vector:
sentence_vector = vectorizeSentence(s, position)

owem[ T[tag] ].update( sentence_vector )

T = OurTaxonomy1

3 TermExtractor  =  parser + chunker + entity resolver that assigns Freebase types to entities.
2 D = 133,000 news documents.
1 FB labels are manually mapped to fine-grained labels.

Supersense inference



Yogatama, Dani, Daniel Gillick, and Nevena Lazic. "Embedding Methods for 
Fine Grained Entity Type Classification." ACL (2). 2015.

Supersense inference



Ahn, Sungjin, et al. "A neural knowledge language model." arXiv preprint 
arXiv:1608.00318 (2016).

W = Topic description, raw text about the topic, e.g. "Rogers was born 
in Latrobe, Pennsylvania in 1928..." (such as Wikipedia)


F = Facts associated with the topic (as triples from FreeBase), such as:


a42 = (Fred_Rogers, Place_of_Birth, Latrobe_Pennsylvania)

a83 = (Fred_Rogers, Year_of_Birth, 1928)

a0 = (Fred_Rogers, Topic_Itself, Fred_Rogers)


The corpus contains pairs (Wk, Fk)kK

Fact-driven generation



Ahn, Sungjin, et al. "A neural knowledge language model." arXiv preprint 
arXiv:1608.00318 (2016).

Two sources of output:


Knowledge words Oa of a fact a is all words (oa1, oa2,..., oaN).

If selected, these words are copied to the output.


Global vocabulary V containing frequent words.

Words describing relationships (e.g., “married to”) are common and thus can be 
generated via the vocabulary V not via copy.

Fact-driven generation



Ahn, Sungjin, et al. "A neural knowledge language model." arXiv preprint 
arXiv:1608.00318 (2016).

During training:


Simple string matching to map words in W to facts in F.

Since not all words are associated with a fact (e.g., words like, is, a, the, have), the 
Not-a-Fact (NaF) type is used to generate those words. 

Fact-driven generation

... Fred_Rogers was born in Pennsylvania...

t-4              t-3   t-2    t-1    t

(in the embeddings space)p(O | born, a, Place_of_Birth, oax ) >
p(V | born, a, Place_of_Birth, oax )



Ahn, Sungjin, et al. "A neural knowledge language model." arXiv preprint 
arXiv:1608.00318 (2016).

During training:


Simple string matching to map words in W to facts in F.

Since not all words are associated with a fact (e.g., words like, is, a, the, have), the 
Not-a-Fact (NaF) type is used to generate those words. 

Fact-driven generation

... Fred_Rogers was born in Pennsylvania...

t-4              t-3   t-2    t-1    t

(in the embeddings space)p(O | born, a, Place_of_Birth, oax ) >
p(V | born, a, Place_of_Birth, oax )

No other words are 
needed (RNN)



Ahn, Sungjin, et al. "A neural knowledge language model." arXiv preprint 
arXiv:1608.00318 (2016).

During training:


Simple string matching to map words in W to facts in F.

Since not all words are associated with a fact (e.g., words like, is, a, the, have), the 
Not-a-Fact (NaF) type is used to generate those words. 

Fact-driven generation

... Fred_Rogers was born in Pennsylvania...

t-4              t-3   t-2    t-1    t

(in the embeddings space)p(O | born, a, Place_of_Birth, oax ) >
p(V | born, a, Place_of_Birth, oax )

Currently fact 
activated



Ahn, Sungjin, et al. "A neural knowledge language model." arXiv preprint 
arXiv:1608.00318 (2016).

During training:


Simple string matching to map words in W to facts in F.

Since not all words are associated with a fact (e.g., words like, is, a, the, have), the 
Not-a-Fact (NaF) type is used to generate those words. 

Fact-driven generation

... Fred_Rogers was born in Pennsylvania...

t-4              t-3   t-2    t-1    t

(in the embeddings space)p(O | born, a, Place_of_Birth, oax ) >
p(V | born, a, Place_of_Birth, oax ) Fact word belong to this topic 

(as positive example)



Ahn, Sungjin, et al. "A neural knowledge language model." arXiv preprint 
arXiv:1608.00318 (2016).

During inference:


Fact-driven generation

Output the fact word 
associated with the relation 
that maximizes the similarity 
with the state at t



Semantic trees

Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

Google DeepMind's Neural Turing Machines...
Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural turing machines." arXiv 

preprint arXiv:1410.5401 (2014).

... applied to a Question and Answer task.



Semantic trees

Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

q = "Which city hosted the longest game before the game in Beijing?"

|        select column      |

|        select column      |

|        select column      |

|        select column      |

|____________________|



Semantic trees

Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

q = "Which city hosted the longest game before the game in Beijing?"

Which city hosted| the longest game before the game in Beijing?

retrieve (=SELECT) column whose title name's embedding

matches the embedding for input word 'city'

|        select column      |

|        select column      |

|        select column      |

|        select column      |

|____________________|



Semantic trees

Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

q = "Which city hosted the longest game before the game in Beijing?"

Which city hosted| the longest game| before the game in Beijing?

argmax of the column whose title name's embedding

matches embedding for input word 'longest'

|        select column      |

|        select column      |

|     argmax(Duration)    |

|        select column      |

|____________________|



Semantic trees

Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

q = "Which city hosted the longest game before the game in Beijing?"

Which city hosted| the longest game| before| the game in Beijing?

less than over the column whose title name's embedding

matches embedding for input word 'before'

|        select column      |

|       less than(Year)      |

|     argmax(Duration)    |

|        select column      |

|____________________|



Semantic trees

Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

q = "Which city hosted the longest game before the game in Beijing?"

Which city hosted| the longest game| before| the game in Beijing|?

over all the rows, row containing the value whose embedding

matches the embedding for input word 'Beijing'

|        select where        |

|       less than(Year)      |

|     argmax(Duration)    |

|        select column      |

|____________________|



Semantic trees

Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

q = "Which city hosted the longest game before the game in Beijing?" 
KB = knowledge base consisting of tables that store facts

encoder = bi-directional Recurrent Neural Network

v  = encoder(q)     #  vector of the encoded query

kb_encoder = KB table encoder



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

q = "Which city hosted the longest game before the game in Beijing?" 
KB = knowledge base consisting of tables that store facts

encoder = bi-directional Recurrent Neural Network

v  = encoder(q)     #  vector of the encoded query

kb_encoder = KB table encoder

fn  = embedding of the name of the n-th column 

wmn  = embedding of the value in the n-th column of the m-th row

[x ; y] = vector concatenation

W = weights (what we will e.g. SGD out of the data)

b = bias

Semantic trees

How the information 
on each DB table is encoded

emn =



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

q = "Which city hosted the longest game before the game in Beijing?" 
KB = knowledge base consisting of tables that store facts

encoder = bi-directional Recurrent Neural Network

v  = encoder(q)     #  vector of the encoded query

kb_encoder = KB table encoder

fn  = embedding of the name of the n-th column 

wmn  = embedding of the value in the n-th column of the m-th row

[x ; y] = vector concatenation

W = weights (what we will e.g. SGD out of the data)

b = bias

normalizeBetween0and1(

penaltiesOrRewards *         # the weights that minimize the loss for this column

[ {sydney... australia... kangaroo...} + {city... town... place...} ] +

somePriorExpectations 


)

Semantic trees

emn =



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

"olympic games near kangaroos" 👍

q = "Which city hosted the longest game before the game in Beijing?" 
KB = knowledge base consisting of tables that store facts

encoder = bi-directional Recurrent Neural Network

v  = encoder(q)     #  vector of the encoded query

kb_encoder = KB table encoder

fn  = embedding of the name of the n-th column 

wmn  = embedding of the value in the n-th column of the m-th row

[x ; y] = vector concatenation

W = weights (what we will e.g. SGD out of the data)

b = bias

normalizeBetween0and1(

penaltiesOrRewards * 

[ {sydney... australia... kangaroo...} + {city... town... place...} ] +

somePriorExpectations 


)

Semantic trees

emn =



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

"olympic games near kangaroos"
Risk of false positives?
Already as probabilities!!

👍

q = "Which city hosted the longest game before the game in Beijing?" 
KB = knowledge base consisting of tables that store facts

encoder = bi-directional Recurrent Neural Network

v  = encoder(q)     #  vector of the encoded query

kb_encoder = KB table encoder

fn  = embedding of the name of the n-th column 

wmn  = embedding of the value in the n-th column of the m-th row

[x ; y] = vector concatenation

W = weights (what we will e.g. SGD out of the data)

b = bias

normalizeBetween0and1(

penaltiesOrRewards * 

[ {sydney... australia... kangaroo...} + {city... town... place...} ] +

somePriorExpectations 


)

Semantic trees

emn =



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

Olympic Games
City Year Duration

Barcelona 1992 15

Atlanta 1996 18

Sydney 2000 17

Athens 2004 14

Beijing 2008 16

London 2012 16

Rio de Janeiro 2016 18

Semantic trees

During training:



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

Which city hosted the 2012 Olympic Games?

Olympic Games
City Year Duration

Barcelona 1992 15

Atlanta 1996 18

Sydney 2000 17

Athens 2004 14

Beijing 2008 16

London 2012 16

Rio de Janeiro 2016 18

Semantic trees



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

Which city hosted the 2012 Olympic Games?

Olympic Games
City Year Duration

Barcelona 1992 15

Atlanta 1996 18

Sydney 2000 17

Athens 2004 14

Beijing 2008 16

London 2012 16

Rio de Janeiro 2016 18

Q(i) =

T(i) =

y(i) =

RNN-encoded = p(vector("column:city") | [ vector("which"), vector("city")... ] )   >
p(vector("column:city") | [ vector("city"), vector("which")... ] ) 

Semantic trees



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

Which city hosted the 2012 Olympic Games?Q(i) =
RNN-encoded = p(vector("column:city") | [ vec("which"), vec("city")... ] )   >

p(vector("column:city") | [ vec("city"), vec("which")... ] ) Executor layer L

p(vector("column:year") | [ ... vec("2012"), vec("olympic") ... ] )   >
p(vector("column:year") | [ ... vec("olympic"), vec("2012") ... ] ) Executor layer L - 1

Executor layer L - 2
p(vector("FROM") | [ ... vec("olympic"), vec("games") ... ] )   >
p(vector("FROM") | [ ... vec("games"), vec("olympic") ... ] ) 

Semantic trees

As many as SQL operations



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

Which city hosted the 2012 Olympic Games?Q(i) =
RNN-encoded = p(vector("column:city") | [ vec("which"), vec("city")... ] )   >

p(vector("column:city") | [ vec("city"), vec("which")... ] ) Executor layer L

p(vector("column:year") | [ ... vec("2012"), vec("olympic") ... ] )   >
p(vector("column:year") | [ ... vec("olympic"), vec("2012") ... ] ) Executor layer L - 1

Executor layer L - 2
p(vector("FROM") | [ ... vec("olympic"), vec("games") ... ] )   >
p(vector("FROM") | [ ... vec("games"), vec("olympic") ... ] ) 

Semantic trees

Each executor applies the same set of weights to all 
rows (a it models a single operation)



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

Which city hosted the 2012 Olympic Games?Q(i) =
RNN-encoded = p(vector("column:city") | [ vec("which"), vec("city")... ] )   >

p(vector("column:city") | [ vec("city"), vec("which")... ] ) Executor layer L

p(vector("column:year") | [ ... vec("2012"), vec("olympic") ... ] )   >
p(vector("column:year") | [ ... vec("olympic"), vec("2012") ... ] ) Executor layer L - 1

Executor layer L - 2
p(vector("FROM") | [ ... vec("olympic"), vec("games") ... ] )   >
p(vector("FROM") | [ ... vec("games"), vec("olympic") ... ] ) 

Before, After are just temporal versions of < and > . 
Neural Turing Machines learn to sort accordingly.

Semantic trees



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

Which city hosted the 2012 Olympic Games?Q(i) =
RNN-encoded = p(vector("column:city") | [ vec("which"), vec("city")... ] )   >

p(vector("column:city") | [ vec("city"), vec("which")... ] ) Executor layer L

p(vector("column:year") | [ ... vec("2012"), vec("olympic") ... ] )   >
p(vector("column:year") | [ ... vec("olympic"), vec("2012") ... ] ) Executor layer L - 1

Executor layer L - 2
p(vector("FROM") | [ ... vec("olympic"), vec("games") ... ] )   >
p(vector("FROM") | [ ... vec("games"), vec("olympic") ... ] ) 

Candidate vector at layer L for 
row m of our database

Memory layer with the last output 
vector generated by executor L - 1

Evaluate a 
candidate:

Semantic trees



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

Which city hosted the 2012 Olympic Games?Q(i) =
RNN-encoded = p(vector("column:city") | [ vec("which"), vec("city")... ] )   >

p(vector("column:city") | [ vec("city"), vec("which")... ] ) Executor layer L

p(vector("column:year") | [ ... vec("2012"), vec("olympic") ... ] )   >
p(vector("column:year") | [ ... vec("olympic"), vec("2012") ... ] ) Executor layer L - 1

Executor layer L - 2
p(vector("FROM") | [ ... vec("olympic"), vec("games") ... ] )   >
p(vector("FROM") | [ ... vec("games"), vec("olympic") ... ] ) 

Row m, R = our table

Set of columns

As an attention mechanism,

cumulatively weight the vector by the output 

weights from executor L - 1
Evaluate a 
candidate:

Semantic trees



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

Which city hosted the 2012 Olympic Games?Q(i) =
RNN-encoded = p(vector("column:city") | [ vec("which"), vec("city")... ] )   >

p(vector("column:city") | [ vec("city"), vec("which")... ] ) Executor layer L

p(vector("column:year") | [ ... vec("2012"), vec("olympic") ... ] )   >
p(vector("column:year") | [ ... vec("olympic"), vec("2012") ... ] ) Executor layer L - 1

Executor layer L - 2
p(vector("FROM") | [ ... vec("olympic"), vec("games") ... ] )   >
p(vector("FROM") | [ ... vec("games"), vec("olympic") ... ] ) 

Row m, R = our table

Set of columns

This allows the system to restrict the 
reference at each step.

Evaluate a 
candidate:

Semantic trees



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

Which city hosted the 2012 Olympic Games?Q(i) =
RNN-encoded = p(vector("column:city") | [ vec("which"), vec("city")... ] )   >

p(vector("column:city") | [ vec("city"), vec("which")... ] ) Executor layer L

p(vector("column:year") | [ ... vec("2012"), vec("olympic") ... ] )   >
p(vector("column:year") | [ ... vec("olympic"), vec("2012") ... ] ) Executor layer L - 1

Executor layer L - 2
p(vector("FROM") | [ ... vec("olympic"), vec("games") ... ] )   >
p(vector("FROM") | [ ... vec("games"), vec("olympic") ... ] ) 

Row m, R = our table

Set of columns

As we weight the vector in the direction of 
each successive operation, it gets closer to 

any applicable answer in our DB.Evaluate a 
candidate:

Semantic trees



Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

SbS is N2N with bias.

SEMPRE is a toolkit for training semantic parsers, which map 
natural language utterances to denotations (answers) via 
intermediate logical forms. Here's an example for querying 
databases. https://nlp.stanford.edu/software/sempre/

Semantic trees

https://nlp.stanford.edu/software/sempre/


Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

SbS is N2N with bias.

SEMPRE is a toolkit for training semantic parsers, which map 
natural language utterances to denotations (answers) via 
intermediate logical forms. Here's an example for querying 
databases. https://nlp.stanford.edu/software/sempre/

😳

😳

Semantic trees

https://nlp.stanford.edu/software/sempre/


Yin, Pengcheng, et al. "Neural enquirer: Learning to query tables with 
natural language." arXiv preprint arXiv:1512.00965 (2015).

SbS is N2N with bias.

SEMPRE is a toolkit for training semantic parsers, which map 
natural language utterances to denotations (answers) via 
intermediate logical forms. Here's an example for querying 
databases. https://nlp.stanford.edu/software/sempre/

😳

😳

😳

Semantic trees

https://nlp.stanford.edu/software/sempre/


Re-entry
Task: given a set of facts or a story, answer questions on those facts in a 
logically consistent way.


Problem: Theoretically, it could be achieved by a language modeler such 
as a recurrent neural network (RNN).


However, their memory (encoded by hidden states and weights) is 
typically too small, and is not compartmentalized enough to accurately 
remember facts from the past (knowledge is compressed into dense 
vectors).


RNNs are known to have difficulty in memorization tasks, i.e., outputting 
the same input sequence they have just read.

Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." 
arXiv preprint arXiv:1410.3916 (2014).



Task: given a set of facts or a story, answer questions on those 
facts in a logically consistent way.


Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." 
arXiv preprint arXiv:1410.3916 (2014).

Jason went to the kitchen. 
Jason picked up the milk. 
Jason travelled to the office. 
Jason left the milk there. 
Jason went to the bathroom.

jason go kitchen 
jason get milk 
jason go office 
jason drop milk 
jason go bathroom

Where is the milk? milk?

Re-entry



F = set of facts (e.g. recent context of conversation; sentences)

M = memory

for fact f in F:         # any linguistic pre-processing may apply

    store f in the next available memory slot of M

Memory networks

Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." 
arXiv preprint arXiv:1410.3916 (2014).

At the reading stage...

Re-entry



F = set of facts (e.g. recent context of conversation; sentences)

M = memory

O = inference module (oracle)

x = input

q = query about our known facts

k = number of candidate facts to be retrieved

m = a supporting fact (typically, the one that maximizes support)

Memory networks

Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." 
arXiv preprint arXiv:1410.3916 (2014).

At the inference stage...

Re-entry



Memory networks

Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." 
arXiv preprint arXiv:1410.3916 (2014).

At the inference stage...

jason go kitchen 
jason get milk 
jason go office 
jason drop milk 
jason go bathroom

F = set of facts (e.g. recent context of conversation; sentences)

M = memory

O = inference module (oracle)

x = input

q = query about our known facts

k = number of candidate facts to be retrieved

m = a supporting fact (typically, the one that maximizes support)

Re-entry



Memory networks

Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." 
arXiv preprint arXiv:1410.3916 (2014).

At the inference stage, t1...

milk
jason go kitchen 
jason get milk 
jason go office 
jason drop milk 
jason go bathroom

Candidate space for k = 2

jason go kitchen 
jason get milk 
jason go office 
jason drop milk 
jason go bathroom

argmax over that space

milk, [ ]

Re-entry



Memory networks

Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." 
arXiv preprint arXiv:1410.3916 (2014).

At the inference stage, t2...

milk
jason go kitchen 
jason get milk 
jason go office 
jason drop milk 
jason go bathroom

Candidate space for k = 2

jason go kitchen 
jason get milk 
jason go office 
jason drop milk 
jason go bathroom

argmax over that space

milk, jason, drop

Re-entry



Memory networks

Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." 
arXiv preprint arXiv:1410.3916 (2014).

At the inference stage, t2...

jason go kitchen 
jason get milk 
jason go office 
jason drop milk 
jason go bathroom

jason go kitchen 
jason get milk 
jason go office 
jason drop milk 
jason go bathroom

Why not?

jason, get, milk = does not contribute as much new 
information as jason go office

Re-entry



Memory networks

Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." 
arXiv preprint arXiv:1410.3916 (2014).

Training is performed with a margin ranking loss and stochastic gradient descent 
(SGD). 


Simple model.


Easy to integrate with any pipeline already working with structured facts (e.g. 
Neural Inquirer). Adds a temporal dimension to it.


All previous research in coreference resolution applies.


Answering the question about the location of the milk requires comprehension of 
the actions picked up and left.

Re-entry



Memory networks

Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." 
arXiv preprint arXiv:1410.3916 (2014).

QACNN CBT-NE CBT-CN Date

69.4 66.6 63.0

Kadlec, Rudolf, et al. "Text understanding with the 
attention sum reader network." arXiv preprint arXiv:
1603.01547 (2016).

75.4 71.0 68.9 4 Mar 16

Sordoni, Alessandro, et al. "Iterative alternating neural 
attention for machine reading." arXiv preprint arXiv:
1606.02245 (2016).

76.1 72.0 71.0 7 Jun 16

Trischler, Adam, et al. "Natural language comprehension 
with the epireader." arXiv preprint arXiv:1606.02270 (2016). 74.0 71.8 70.6 7 Jun 16

Dhingra, Bhuwan, et al. "Gated-attention readers for text 
comprehension." arXiv preprint arXiv:1606.01549 (2016). 77.4 71.9 69.0 5 Jun 16

Re-entry



0

25

50

75

100

KB IE Wikipedia

76.2

68.3

93.9

69.9

63.4

78.5

No Knowledge
(embeddings)

Standard QA 
System on KB

54.4%

93.5%
17%

Memory Networks Key-Value Memory Networks

Re
sp

on
se

 a
cc

ur
ac

y 
(%

)

Source: Antoine Bordes, Facebook AI Research, LXMLS Lisbon July 28, 2016

Results on MovieQA



Conclusions



Summary of desiderata

Use a modular neuralized architecture to compute answers for unseen 
questions dynamically.

Enable semantic parsing using a neuralized architecture with respect to 
some knowledge base serving as ground truth.

Use memory networks to effectively keep track of the entities 
throughout the conversation and ensure logical consistency.

Extend memory networks by integrating support for supersenses. 
Enable inference at training and test time.

Extend the neuralized architecture's domain by integrating support for 
supersenses. Enable inference at training and test time.



Summary of desiderata

Conversational technology should really be about


• dynamically finding the best possible way to browse a large 
repository of information/actions.


• find the shortest path to any relevant action or piece of information 
(to avoid the plane dashboard effect).


• surfacing implicit data in unstructured content ("bocadillo de 
calamares in Madrid"). Rather than going open-domain, taking the 
closed-domain and going deep into it.

Remember?



thanks!


