APPLYING MACHINE LEARNING IN
MOBILE DEVICE AD TARGETING

Leonard Newnham \_ngfm
Chief Data Scientist MOBILE VIDEO.

ARTIFICIAL INTELLIGENCE.
DATA.




Who is LoopMe?
What we do

The problem we solve
Data

Predictive models
Bidders

Future Research

| essons Learned

Introduction



Who Is LoopMe?

LoopMe is the world’s largest mobile video platform,
reaching over 1.25 billion consumers worldwide.

London and Ukraine based start-up

Machine Learning is at the core of everything we do
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What We Do
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Outside World: Bid Request Box
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Ad Campalign

Contract with advertiser

 Number of impressions,

* Time period,

* Creative set,

* Country,

* White list

* Creative format,

» Optimisation goal: CPM, CPC, CPI

10,000 impressions per day for 28 days
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The Problem we Solve

Within milliseconds:

 Determine relevant creatives

 Score these creatives against KPI to optimise
 Determine whether to respond

 Determine how much to bid

« Respond



How we do this

How do we do this:

Collect data and build profiles
Predictive models

Bidding algorithms






User id

City

Country

SP
P

Device width
Device height
Device OS version
Device OS

Note:

All user IDs are anonymous

We don’t store data if user opts out
Pll data not stored

Base Data

Session depth
Orientation
Platform
Publisher
SDK

Time

App hame
App company



Augmented Data - Segments

Segments: Three Sources
Male/ Female
Age Range * Simple rules:
Various game categories enthusiasts If owns App A, Bor C
Health and fitness fans then Computer Gamer

Messaging enthusiasts
Productivity apps users
Early adopters

etc...

* Predictive models:

profile data -> -> p(Female) = 0.82

 Third party data:
various commercial providers
many small, free sources, eg weather.
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Augmented Data - Location

Location with varying degrees of accuracy:

 |P Address
city, country, region

 Wifi name
university or business name

e GPS coordinates
nearby businesses and POls
Types of businesses visited

From all three:
Home/office location
Frequent Traveller
etc.



Augmented Data — App and Creative Attributes

App Data:
* App name and App category
Categorization of users based on apps used

Creative attributes:
* Age rating
child, teen, adult, everyone, etc.

* |nteractive
whether interactive or not

e Audio
has audio

 Type of content
video, banner, pre-roll, click-to-play, etc.



Data: Example Profile
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Total profiles
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1 500M

1 450M

1 400M

Segment: Football visitors
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Processed events
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Data: Segments

Turning raw data into useful data
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Data Sets and Predictive Model Building

We Match Campaigns to People




Data Sets and Predictive Model Building

Of course, it is not always this easy...
many dozens of factors involved

However, we do need to model interactions

Campaign A appeals to Person Type X
Campaign B appeals to Person Type Y

And do it in real-time

There are several ways to do this...



Data Sets and Predictive Model Building

Single simple model, eg logistic regression
* Learns weight for each binary feature

* Problem
Cannot easily learn
campaign A appeals to men
campaignh B appeals to women



Data Sets and Predictive Model Building

One model for each campaign
* Now we learn exactly what type of people campaigns A and B appeal to.

* Problems:
1. takes a long time to get sufficient data for a new campaign
2. No learning is transferred to new campaign
3. Learning common to all campaigns is learned multiple times



Data Sets and Predictive Model Building

Single Model with interaction features between campaign and other variables

New features:
campaign=A AND gender=M, campaignh=A AND gender=F,...

* Now we learn common learning just once and efficiently
* We can learn campaigh A appeals to men and campaign B appeals to women
* Problems

Much learning lost when a campaign is terminated and replaced
by similar one



Data Sets and Predictive Model Building

Single Model with interaction features between campaign features and other
variables
say:
campaign A is for tennis rackets

campaign B is for tennis balls } both sporting products

Add attribute to a campaign of product type

If campaign B is replaced by campaign C, also sporting product
-> much learning common to all sporting products transferred

* Problems
We get a lot of features. Easily >1 million for real application
-> problem with noise.



Data Sets and Predictive Model Building

Factorisation Machine
* Learn
bias
1-way interactions
2-way interactions and factorise these

Have all interactions between campaign features and other variables

Result: manageable model size



LIbFM Performance

Factorisation Machine and
Vowpal Wabbit performance

Performance
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Bidding algorithms

Ad Exchanges run second price auctions
For CPC - cost per click, a simple strategy
Expected return = p(click) * CPC

Bid this amount

Total budget and campaign lifetime mean this is
not optimal...



Bidding algorithms

Currently experimenting with different bidder types.
Open area for research

CPM chart CPC chart
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Future Research Areas

Digital fingerprinting
- where there Is no persistent device ID
- mobile web

Changing behaviour
- How do we target the individuals where we can change behaviour?
- Not just those who click the most

Low Frequency Events
- beyond clicks and installs
- advertisers are interested In people taking actions
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Changing Behaviour

Traditional “response” models have a
tendency to direct resources towards
customers who would have bought anyway

This often results in strong models but
comparatively few incremental sales

The customers who spend most after being
subject to a marketing intervention are not
necessarily the ones whose spending
increases most as a result of that intervention

100%

Purchase probability if treated

7 Lost
Causes

100%
Purchase probability if not treated






Concurrent and Persistent Control Groups

nnnnn

* First time visitor seen, randomly assign to e meewmes £ T
customer group, typically:

90% Al group — always receive best o e
prediction of Al . f
10% baseline group — business-as-usual, e

served without using Al

* Concurrent control groups give the most accurate measure of uplift
eliminates errors due to changes over time

« Uplift = Al performance / baseline performance



Measure Everything

Data Dashboard

Overall Statistics

A

Model features

Model performance

Click-model: Log Loss

Video-model: Log Loss Install-model: Log Loss
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Improved Visualisation:
Al uplift
e Al audience insights
e What Al has learned

Visualisation
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| essons Learned

Use concurrent control groups

Measure everything
dashboard pages for various views of the system

Visualisation of results
Investigate every issue

Don’t rely only on high level metrics like log-loss
Look at the detalil as well



THANK YOU

leonard@loopme.com
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