# DEEP LEARNING

# FOR NATURAL LANGUAGE PROCESSING

Sergey I. Nikolenko<sup>1,2,3</sup>

Al Ukraine Kharkiv, Ukraine, October 8, 2016

<sup>1</sup> NRU Higher School of Economics, St. Petersburg
<sup>2</sup> Steklov Institute of Mathematics at St. Petersburg
<sup>3</sup> Deloitte Analytics Institute, Moscow

*Random facts*: on October 8, 1480, the Great Standoff on the Ugra River ended Tatar rule in Russia; on October 8, 1886, the first public library opened in Kharkiv (now named after Korolenko).

- The deep learning revolution has not left natural language processing alone.
- DL in NLP has started with standard architectures (RNN, CNN) but then has branched out into new directions.
- Our plan for today:
  - (1) a primer on sentence embeddings and character-level models;
  - a ((very-)very) brief overview of the most promising directions in modern NLP based on deep learning.
- We will concentrate on directions that have given rise to new models and architectures.

- Basic neural network architectures that have been adapted for deep learning over the last decade:
  - feedforward NNs are the basic building block;



- *Deep* learning refers to several layers, any network mentioned above can be deep or shallow, usually in several different ways.
- · So let us see how all this comes into play for natural language...

- Basic neural network architectures that have been adapted for deep learning over the last decade:
  - autoencoders map a (possibly distorted) input to itself, usually for feature engineering;



- *Deep* learning refers to several layers, any network mentioned above can be deep or shallow, usually in several different ways.
- So let us see how all this comes into play for natural language...

- Basic neural network architectures that have been adapted for deep learning over the last decade:
  - convolutional NNs apply NNs with shared weights to certain windows in the previous layer (or input), collecting first local and then more and more global features;



- *Deep* learning refers to several layers, any network mentioned above can be deep or shallow, usually in several different ways.
- So let us see how all this comes into play for natural language...

- Basic neural network architectures that have been adapted for deep learning over the last decade:
  - *recurrent* NNs have a hidden state and propagate it further, used for sequence learning;



- *Deep* learning refers to several layers, any network mentioned above can be deep or shallow, usually in several different ways.
- So let us see how all this comes into play for natural language...

- Basic neural network architectures that have been adapted for deep learning over the last decade:
  - in particular, LSTM (*long short-term memory*) and GRU (*gated recurrent unit*) units are an important RNN architecture often used for NLP, good for longer dependencies.



- *Deep* learning refers to several layers, any network mentioned above can be deep or shallow, usually in several different ways.
- So let us see how all this comes into play for natural language...

# WORD EMBEDDINGS, SENTENCE EMBEDDINGS, AND CHARACTER-LEVEL MODELS

# WORD EMBEDDINGS

- Distributional hypothesis in linguistics: words with similar meaning will occur in similar contexts.
- Distributed word representations map words to a Euclidean space (usually of dimension several hundred):
  - started in earnest in (Bengio et al. 2003; 2006), although there were earlier ideas;
  - word2vec (Mikolov et al. 2013): train weights that serve best for simple prediction tasks between a word and its context: continuous bag-of-words (CBOW) and skip-gram;
  - *Glove* (Pennington et al. 2014): train word weights to decompose the (log) cooccurrence matrix.
- Interestingly, semantic relationships between the words sometimes map into geometric relationships: king + woman - man ≈ queen, Moscow + France - Russia ≈ Paris, and so on.

#### **CBOW AND SKIP-GRAM**

- Difference between skip-gram and CBOW architectures:
  - · CBOW model predicts a word from its local context;
  - skip-gram model predicts context words from the current word.



- Russian examples:
  - nearest neighbors of the word конференция:

| пресс-конференция | 0.6919 |
|-------------------|--------|
| программа         | 0.6827 |
| выставка          | 0.6692 |
| ассоциация        | 0.6638 |
| кампания          | 0.6406 |
| ярмарка           | 0.6372 |
| экспедиция        | 0.6305 |
| презентация       | 0.6243 |
| сходка            | 0.6162 |
| встреча           | 0.6100 |
|                   |        |

- Sometimes antonyms also fit:
  - nearest neighbors of the word любовь:

| жизнь    | 0.5978 |
|----------|--------|
| нелюбовь | 0.5957 |
| приязнь  | 0.5735 |
| боль     | 0.5547 |
| страсть  | 0.5520 |

nearest neighbors of the word синоним:

| антоним   | 0.5459 |
|-----------|--------|
| эвфемизм  | 0.4642 |
| анаграмма | 0.4145 |
| омоним    | 0.4048 |
| оксюморон | 0.3930 |

- On sexism:
  - nearest neighbors of the word программист:

nearest neighbors of the word программистка:

| стажерка      | 0.4755 |
|---------------|--------|
| инопланетянка | 0.4500 |

- американочка 0.4481
- предпринимательница 0.4442
  - студенточка 0.4368

- $\cdot$  What do you think are the
  - nearest neighbors of the word комендантский?

- $\cdot$  What do you think are the
  - nearest neighbors of the word комендантский:

| неурочный      | 0.7276 |
|----------------|--------|
| неровен        | 0.7076 |
| урочный        | 0.6849 |
| ровен          | 0.6756 |
| предрассветный | 0.5867 |
| условленный    | 0.5597 |
|                |        |

- $\cdot$  Word embeddings are the first step of most DL models in NLP.
- $\cdot\,$  But we can go both up and down from word embeddings.
- First, a sentence is not necessarily the sum of its words.
- Second, a word is not quite as atomic as the word2vec model would like to think.

- · How do we combine word vectors into "text chunk" vectors?
- The simplest idea is to use the sum and/or mean of word embeddings to represent a sentence/paragraph:
  - a baseline in (Le and Mikolov 2014);
  - a reasonable method for short phrases in (Mikolov et al. 2013)
  - shown to be effective for document summarization in (Kageback et al. 2014).

- · How do we combine word vectors into "text chunk" vectors?
- Distributed Memory Model of Paragraph Vectors (PV-DM) (Le and Mikolov 2014):
  - a sentence/paragraph vector is an additional vector for each paragraph;
  - · acts as a "memory" to provide longer context;
- Distributed Bag of Words Model of Paragraph Vectors (PV-DBOW) (Le and Mikolov 2014):
  - the model is forced to predict words randomly sampled from a specific paragraph;
  - the paragraph vector is trained to help predict words from the same paragraph in a small window.

- · How do we combine word vectors into "text chunk" vectors?
- A number of convolutional architectures (Ma et al., 2015; Kalchbrenner et al., 2014).
- (Kiros et al. 2015): skip-thought vectors capture the meanings of a sentence by training from skip-grams constructed on sentences.
- (Djuric et al. 2015): model large text streams with hierarchical neural language models with a document level and a token level.

- · How do we combine word vectors into "text chunk" vectors?
- Recursive neural networks (Socher et al., 2012):
  - a neural network composes a chunk of text with another part in a tree;
  - works its way up from word vectors to the root of a parse tree.



- · How do we combine word vectors into "text chunk" vectors?
- Recursive neural networks (Socher et al., 2012):
  - by training this in a supervised way, one can get a very effective approach to sentiment analysis (Socher et al. 2013).



- · How do we combine word vectors into "text chunk" vectors?
- A similar effect can be achieved with CNNs.
- Unfolding Recursive Auto-Encoder model (URAE) (Socher et al., 2011) collapses all word embeddings into a single vector following the parse tree and then reconstructs back the original sentence; applied to paraphrasing and paraphrase detection.



- · How do we combine word vectors into "text chunk" vectors?
- *Deep Structured Semantic Models* (DSSM) (Huang et al., 2013; Gao et al., 2014a; 2014b): a deep convolutional architecture trained on similar text pairs.



#### CHARACTER-LEVEL MODELS

- Word embeddings have important shortcomings:
  - vectors are independent but words are not; consider, in particular, morphology-rich languages like Russian/Ukrainian;
  - the same applies to out-of-vocabulary words: a word embedding cannot be extended to new words;
  - word embedding models may grow large; it's just lookup, but the whole vocabulary has to be stored in memory with fast access.
- E.g., "polydistributional" gets 48 results on Google, so you probably have never seen it, and there's very little training data:

| Bce | Карты | Картинки | Видео | Новости | Ещё 🔻 | Инструменты поиска |
|-----|-------|----------|-------|---------|-------|--------------------|
|     |       |          |       |         |       |                    |

• Do you have an idea what it means? Me too.

- Hence, character-level representations:
  - began by decomposing a word into morphemes (Luong et al. 2013; Botha and Blunsom 2014; Soricut and Och 2015);
  - but this adds errors since morphological analyzers are also imperfect, and basically a part of the problem simply shifts to training a morphology model;
  - two natural approaches on character level: LSTMs and CNNs;
  - in any case, the model is slow but we do not have to apply it to every word, we can store embeddings of common words in a lookup table as before and only run the model for rare words – a nice natural tradeoff.

#### CHARACTER-LEVEL MODELS

• C2W (Ling et al. 2015) is based on bidirectional LSTMs:



- The approach of *Deep Structured Semantic Model* (DSSM) (Huang et al., 2013; Gao et al., 2014a; 2014b):
  - · sub-word embeddings: represent a word as a bag of trigrams;
  - vocabulary shrinks to  $|V|^3$  (tens of thousands instead of millions), but collisions are very rare;
  - the representation is robust to misspellings (very important for user-generated texts).



#### CHARACTER-LEVEL MODELS

- ConvNet (Zhang et al. 2015): text understanding from scratch, from the level of symbols, based on CNNs.
- They also propose a nice idea for data augmentation (replace words with synonyms from WordNet or such).



• Character-level models and extensions to appear to be very important, especially for morphology-rich languages like Russian/Ukrainian.

- Other modifications of word embeddings add external information.
- E.g., the RC-NET model (Xu et al. 2014) extends skip-grams with relations (semantic and syntactic) and categorical knowledge (sets of synonyms, domain knowledge etc.).



#### WORD SENSE DIAMBIGUATION

П

- Another important problem with both word vectors and char-level models: homonyms.
- How do we distinguish different senses of the same word?
  - most similar for the word κοca:

| бахрома   | 0.4898 |
|-----------|--------|
| косичка   | 0.4867 |
| пластина  | 0.4738 |
| балка     | 0.4616 |
| роплешина | 0.4585 |

- but really usually the model just chooses one meaning.
- We have to add *latent* variables for different meaning and infer them from context.
- To train the meanings with latent variables Bayesian inference with stochastic variational inference (Bartunov et al., 2015).

# **GENERAL APPROACHES**

# TEXT GENERATION WITH RNNS

- Language modeling and text generation is a natural direct application of NN-based NLP; word embeddings started as a "neural probabilistic language model" (Bengio et al., 2003).
- First idea sequence learning with RNNs/LSTMs.
- Surprisingly, simple RNNs can produce quite reasonably-looking text even by training character by character, with no knowledge of the words ("The Unreasonable Effectiveness..."), including the famous example from (Sutskever et al. 2011):

*The meaning of life is* the tradition of the ancient human reproduction: it is less favorable to the good boy for when to remove her bigger...

- This is, of course, not "true understanding" (whatever that means), only short-term memory effects.
- We need to go deeper in terms of both representations and sequence modeling.

#### TEXT GENERATION WITH RNNS

- One can change diversity (sampling temperature) and get different styles of absurdistic texts. Random example with seed «обещал, на рождество, но спустя семь лет. имя глав».
- · Low diversity gets you Lucky's monologue from "Waiting for Godot":

обещал, на рождество, но спустя семь лет. имя главного командования в составе советского союза с 1976 года. после проведения в 1992 году в составе советского союза (1977). в 1967 году в составе советского союза состоялся в 1952 году в составе советско-финской войны 1877 - 1877 годов. в 1966 году в составе советского союза с 1965 года по 1977 год...

• Mid-range diversity produces something close to meaningful text:

обещал, на рождество, но спустя семь лет. имя главного рода собственно вновь образовалась в россии и народном состоянии. после присказа с постановлением союза писателей россии и генеральной диссертации о спортивном училище с 1980 года. в 1970-х годах был основан в составе комитета высшего совета театра в польши. в 1957 - 1962 годах - начальник батальона сан-аухаров...

• High diversity leads to Khlebnikov's zaum:

обещал, на рождество, но спустя семь лет. имя главы философии пововпели nollнози - врайу-7 на луосече. человеческая восстания покторов извоенного чомпде и э. дроссенбурга, ... карл уним-общекрипских. эйелем хфечак от этого списка сравнивала имущно моря в юнасториансический индристское носительских женатов в церкви испании....

#### DSSM

- A general approach to NLP based on CNNs is given by *Deep Structured Semantic Model* (DSSM) (Huang et al., 2013; Gao et al., 2014a; 2014b):
  - one-hot target vectors for classification (speech recognition, image recognition, language modeling).





- A general approach to NLP based on CNNs is given by *Deep Structured Semantic Model* (DSSM) (Huang et al., 2013; Gao et al., 2014a; 2014b):
  - vector-valued targets for semantic matching.



#### DSSM

- A general approach to NLP based on CNNs is given by *Deep Structured Semantic Model* (DSSM) (Huang et al., 2013; Gao et al., 2014a; 2014b):
  - · can capture different targets (one-hot, vector);
  - to train with vector targets reflection: bring source and target vectors closer.


#### DSSM

- A general approach to NLP based on CNNs is given by *Deep Structured Semantic Model* (DSSM) (Huang et al., 2013; Gao et al., 2014a; 2014b):
- DSSMs can be applied in a number of different contexts when we can specify a supervised dataset:
  - · semantic word embeddings: word by context;
  - web search: web documents by query;
  - question answering: knowledge base relation/entity by pattern;
  - recommendations: interesting documents by read/liked documents;
  - · translation: target sentence by source sentence;
  - text/image: labels by images or vice versa.
- Basically, this is an example of a general architecture that can be trained to do almost anything.

### DQN

- $\cdot\,$  (Guo, 2015): generating text with deep reinforcement learning.
- Begin with easy parts, then iteratively decode the hard parts with DQN.



• Next, we proceed to specific NLP problems that have led to interesting developments.

## **DEPENDENCY PARSING**

#### DEPENDENCY PARSING

- We mentioned parse trees; but how do we construct them?
- Current state of the art continuous-state parsing: current state is encoded in R<sup>d</sup>.
- *Stack LSTMs* (Dyer et al., 2015) the parser manipulates three basic data structures:
  - (1) a buffer B that contains the sequence of words, with state  $b_t$ ;
  - (2) a stack S that stores partially constructed parses, with state  $s_t$ ;
  - (3) a list A of actions already taken by the parser, with state  $a_t$ .
- b<sub>t</sub>, s<sub>t</sub>, and a<sub>t</sub> are hidden states of stack LSTMs, LSTMs that have a stack pointer: new inputs are added from the right, but the current location of the stack pointer shows which cell's state is used to compute new memory cell contents.

#### DEPENDENCY PARSING WITH MORPHOLOGY

- Important extension (Ballesteros et al., 2015):
  - in morphologically rich natural languages, we have to take into account morphology;
  - so they represent the words by bidirectional character-level LSTMs;
  - report improved results in Arabic, Basque, French, German, Hebrew, Hungarian, Korean, Polish, Swedish, and Turkish;
  - this direction probably can be further improved (and where's Russian or Ukrainian in the list above?..).



#### EVALUATION FOR SEQUENCE-TO-SEQUENCE MODELS

- Next we will consider specific models for machine translation, dialog models, and question answering.
- But how do we evaluate NLP models that produce text?
- Quality metrics for comparing with reference sentences produced by humans:
  - BLEU (Bilingual Evaluation Understudy): reweighted precision (incl. multiple reference translations);
  - METEOR: harmonic mean of unigram precision and unigram recall;
  - TER (Translation Edit Rate): number of edits between the output and reference divided by the average number of reference words;
  - LEPOR: combine basic factors and language metrics with tunable parameters.
- The same metrics apply to paraphrasing and, generally, all problems where the (supervised) answer should be a free-form text.

- Translation is a very convenient problem for modern NLP:
  - on one hand, it is very practical, obviously important;
  - on the other hand, it's very high-level, virtually impossible without deep understanding, so if we do well on translation, we probably do something right about understanding;
  - on the third hand (oops), it's quantifiable (BLEU, TER etc.) and has relatively large available datasets (parallel corpora).

- Statistical machine translation (SMT): model conditional probability p(y | x) of target y (translation) given source x (text).
- Classical SMT: model  $\log p(y \mid x)$  with a linear combination of features and then construct these features.
- NNs have been used both for reranking the best lists of possible translations and as part of feature functions:



- NNs are still used for feature engineering with state of the art results, but here we are more interested in sequence-to-sequence modeling.
- Basic idea:
  - RNNs can be naturally used to probabilistically model a sequence  $\begin{aligned} X &= (x_1, x_2, \dots, x_T) \text{ as } p(x_1), p(x_2 \mid x_1), \dots, \\ p(x_T \mid x_{<T}) &= p(x_T \mid x_{T-1}, \dots, x_1), \text{ and then the joint} \\ \text{ probability } p(X) \text{ is just their product} \\ p(X) &= p(x_1)p(x_2 \mid x_1) \dots p(x_k \mid x_{< k}) \dots p(x_T \mid x_{< T}); \end{aligned}$
  - this is how RNNs are used for language modeling;
  - we predict next word based on the hidden state learned from all previous parts of the sequence;
  - in translation, maybe we can learn the hidden state from one sentence and apply to another.

• Direct application – bidirectional LSTMs (Bahdanau et al. 2014):



• But do we really translate word by word?

• No, we first understand the whole sentence; hence *encoder-decoder* architectures (Cho et al. 2014):



- But compressing the entire sentence to a fixed-dimensional vector is hard; quality drops dramatically with length.
- Soft attention (Luong et al. 2015a; 2015b; Jean et al. 2015):
  - encoder RNNs are bidirectional, so at every word we have a "focused" representation with both contexts;
  - attention NN takes the state and local representation and outputs



• We get better word order in the sentence as a whole:



- Attention is an "old" idea (Larochelle, Hinton, 2010), and can be applied to other RNN architectures, e.g., image processing and speech recognition; in other sequence-based NLP tasks:
  - syntactic parsing (Vinyals et al. 2014),
  - modeling pairs of sentences (Yin et al. 2015),
  - question answering (Hermann et al. 2015),
  - "Show, Attend, and Tell" (Xu et al. 2015).

- Sep 26, 2016: Wu et al., Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation:
  - this very recent paper shows how Google Translate actually works;
  - · the basic architecture is the same: encoder, decoder, attention;
  - RNNs have to be deep enough to capture language irregularities, so 8 layers for encoder and decoder each:



- Sep 26, 2016: Wu et al., Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation:
  - but stacking LSTMs does not really work: 4-5 layers are OK, 8 layers don't work;
  - so they add residual connections between the layers, similar to (He, 2015):



- Sep 26, 2016: Wu et al., Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation:
  - and it makes sense to make the bottom layer bidirectional in order to capture as much context as possible:



- Sep 26, 2016: Wu et al., Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation:
- GNMT also uses two ideas for word segmentation:
  - *wordpiece model*: break words into wordpieces (with a separate model); example from the paper:

Jet makers feud over seat width with big orders at stake

becomes

\_J et \_makers \_fe ud \_over \_seat \_width \_with \_big \_orders \_at \_stake

 mixed word/character model: use word model but for out-of-vocabulary words convert them into characters (specifically marked so that they cannot be confused); example from the paper:

Miki becomes <B>M <M>i <M>k <E>i

## DIALOG AND CONVERSATION

#### DIALOG AND CONVERSATIONAL MODELS

- Dialog models attempt to model and predict dialogue; conversational models actively talk to a human.
- *Not just chat bots*! Applications automatic chat systems for business etc., so we want to convey information.
- Vinyals and Le (2015) use seq2seq (Sutskever et al. 2014):
  - feed previous sentences ABC as context to the RNN;
  - predict the next word of reply WXYZ based on the previous word and hidden state.



• They get a reasonable conversational model, both general (MovieSubtitles) and in a specific domain (IT helpdesk).

- Hierarchical recurrent encoder decoder architecture (HRED); first proposed for query suggestion in IR (Sordoni et al. 2015), used for dialog systems in (Serban et al. 2015).
- The dialogue as a two-level system: a sequence of utterances, each of which is in turn a sequence of words. To model this two-level system, HRED trains:
  - (1) *encoder* RNN that maps each utterance in a dialogue into a single utterance vector;
  - (2) context RNN that processes all previous utterance vectors and combines them into the current context vector;
  - (3) *decoder* RNN that predicts the tokens in the next utterance, one at a time, conditional on the context RNN.

HRED architecture:



• (Serban et al. 2015) report promising results in terms of both language models (perplexity) and expert evaluation.

- Some recent developments:
  - (Li et al., 2016a) apply, again, reinforcement learning (DQN) to improve dialogue generation;
  - (Li et al., 2016b) add *personas* with latent variables, so dialogue can be more consistent (yes, it's the same Li);
  - (Wen et al., 2016) use *snapshot learning*, adding some weak supervision in the form of particular events occurring in the output sequence (whether we still want to say something or have already said it);
  - (Su et al., 2016) improve dialogue systems with online active reward learning, a tool from reinforcement learning.
- Generally, chatbots are becoming commonplace but it is still a long way to go before actual general-purpose dialogue.

- Question answering (QA) is one of the hardest NLP challenges, close to true language understanding.
- Let us begin with evaluation:
  - · it's easy to find datasets for information retrieval;
  - these questions can be answered knowledge base approaches: map questions to logical queries over a graph of facts;
  - in a multiple choice setting (Quiz Bowl), map the question and possible answers to a semantic space and find nearest neighbors (Socher et al. 2014);
  - but this is not exactly general question answering.
- (Weston et al. 2015): a dataset of simple (for humans) questions that do not require any special knowledge.
- But require reasoning and understanding of semantic structure...

#### • Sample questions:

| Task 1: Single Supporting Fact      | Task 4: Two Argument Relations                     |
|-------------------------------------|----------------------------------------------------|
| Mary went to the bathroom.          | The office is north of the bedroom.                |
| John moved to the hallway.          | The bedroom is north of the bathroom.              |
| Mary travelled to the office.       | The kitchen is west of the garden.                 |
| Where is Mary?                      | What is north of the bedroom? A: office            |
| A: office                           | What is the bedroom north of? A: bathroom          |
| Task 7: Counting                    | Task 10: Indefinite Knowledge                      |
| Daniel picked up the football.      | John is either in the classroom or the playground. |
| Daniel dropped the football.        | Sandra is in the garden.                           |
| Daniel got the milk.                | Is John in the classroom?                          |
| Daniel took the apple.              | A: maybe                                           |
| How many objects is Daniel holding? | Is John in the office?                             |
| A: two                              | A: no                                              |
| Task 15: Basic Deduction            | Task 20: Agent's Motivations                       |
| Sheep are afraid of wolves.         | John is hungry.                                    |
| Cats are afraid of dogs.            | John goes to the kitchen.                          |
| Mice are afraid of cats.            | John grabbed the apple there.                      |
| Gertrude is a sheep.                | Daniel is hungry.                                  |
| What is Gertrude afraid of?         | Where does Daniel go? A: kitchen                   |
| A: wolves                           | Why did John go to the kitchen? A: hungry          |

• One problem is that we have to *remember* the context set throughout the whole question...

- ...so the current state of the art are *memory networks* (Weston et al. 2014).
- An array of objects (memory) and the following components learned during training:
  - I (input feature map) converts the input to the internal feature representation;
  - G (generalization) updates old memories after receiving new input;
  - O (output feature map) produces new output given a new input and a memory state;
  - R (response) converts the output of O into the output response format (e.g., text).

- Dynamic memory networks (Kumar et al. 2015).
- Episodic memory unit that chooses which parts of the input to focus on with an attention mechanism:



- End-to-end memory networks (Sukhbaatar et al. 2015).
- A continuous version of memory networks, with multiple hops (computational steps) per output symbol.
- Regular memory networks require supervision on each layer; end-to-end ones can be trained with input-output pairs:



- There are plenty of other extensions; one problem is how to link QA systems with knowledge bases to answer questions that require both reasoning and knowledge.
- Google DeepMind is also working on QA (Hermann et al. 2015):
  - a CNN-based approach to QA, also tested on the same dataset;
  - perhaps more importantly, a relatively simple and straightforward way to convert unlabeled corpora to questions;
  - e.g., given a newspaper article and its summary, they construct (context, query, answer) triples that could then be used for supervised training of text comprehension models.
- I expect a lot of exciting things to happen here.
- But allow me to suggest...

• «What? Where? When?»: a team game of answering questions. Sometimes it looks like this...



• ...but usually it looks like this:



- Teams of  $\leq$  6 players answer questions, whoever gets the most correct answers wins.
- db.chgk.info database of about 300K questions.
- Some of them come from "Своя игра", a Jeopardy clone but often with less direct questions:
  - Современная музыка

На самом деле первое слово в названии **ЭТОГО** коллектива совпадает с фамилией шестнадцатого президента США, а исказили его для того, чтобы приобрести соответствующее названию доменное имя.

- Россия в начале XX века
  В ЭТОМ году в России было собрано 5,3 миллиарда пудов зерновых.
- Чёрное и белое

**ОН** постоянно меняет черное на белое и наоборот, а его соседа в этом вопросе отличает постоянство.

- Most are "Что? Где? Когда?" questions, even harder for automated analysis:
  - Ягоды черники невзрачные и довольно простецкие. Какой автор утверждал, что не случайно использовал в своей книге одно из названий черники?
  - В середине тридцатых годов в Москве выходила газета под названием «Советское метро». Какие две буквы мы заменили в предыдущем предложении?
  - Русская примета рекомендует 18 июня полоть сорняки. Согласно второй части той же приметы, этот день можно считать благоприятным для НЕЁ. Назовите ЕЁ словом латинского происхождения.
  - Соблазнитель из венской оперетты считает, что после НЕГО женская неприступность уменьшается вчетверо. Назовите ЕГО одним словом.
- I believe it is a great and very challenging QA dataset.
- How far in the future do you think it is? :)

# Thank you for your attention!