
The Splendors and
Miseries of Tensorflow

Oleksandr Khryplyvenko  
sept. 2016

Ph.D. Student at IMMSP NASU
m3oucat@gmail.com

License: BSD

mailto:m3oucat@gmail.com

Briefly about myself and how I met tf

1/20

2002 2003 2004 2008 2014 2016

code work linux master CS ML Ph.D. student

WorkResearch

I use ML for(order matters):

For whom and what it covers

There are lots of related pages on the internet,
but I’m telling here only about the things I’ve used.

2/20

Imagine that you spent 2 years on intensive ML(more research, less - production)

Here’s brief of these 2 years related to frameworks

I’ll will:

• compare TF with other frameworks
• tell about pros and cons of TF
• do some mathematics TF is based on (so are other frameworks too)
• tell about installation & usage nuances
• show how to debug(with a demo)

TF Theano Torch Caffe CNTK

prog
language

python/C++ python/C++ lua/C C++/python
specific

language
the way
∂ƒ(x)/∂x

calculated

symbolic symbolic
automatic

*,***
no automatic

cluster yes no yes yes** yes

quality of doc, 
samples

excellent good good poor poor

community  
help

guarranteed
(up to 1 day)

not
guaranteed

middle Not used Not used

core/API
code

complexity

easy cryptic good hard Not used

I used ≈ 1 yr 6 months 6 months <1 month < 1 month

https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software

TF & other ML frameworks

3/20

https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software

*http://dmlc.ml/2016/09/30/build-your-own-tensorflow-with-nnvm-and-torch.html

**https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5

https://indico.io/blog/the-good-bad-ugly-of-tensorflow/

***https://github.com/twitter/torch-autograd

4/20

http://dmlc.ml/2016/09/30/build-your-own-tensorflow-with-nnvm-and-torch.html
https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5
https://indico.io/blog/the-good-bad-ugly-of-tensorflow/
https://github.com/twitter/torch-autograd

Baby-steps TF cons(immature)

- TF is not the fastest at the moment. But it’s getting faster each release
- lots of reported & unreported issues. Be gentoo-way!
- syntax sugar-free. But it’s getting better each release.(example - slices on vars)
- can’t modify existing graph
- does not automatically simplify graph: ca + cb -> c(x+y)

5/20

Resume: it’s not always the choice for production yet

- fast coding
- easy understandable and scalable code
- symbolic computation

6/20

- Google dataset pretrained models(use or fine tune)

TF pros, that won’t be beaten

0

0.25

0.5

0.75

1

commits/yr contributors/yr

Torch Theano Tensorflow
- fundamental  

torch7: 1073 commits, 105 contributors  
theano: 23636 commits, 258 contributors  
tensorflow: 8603 commits, 430 contributors  
TF exists only a year. Theano - more than 6 yrs. Torch - 14 years

- parallelisation. It’s simple. 
https://www.tensorflow.org/versions/r0.11/how_tos/distributed/index.html

- Virtually any architecture may be implemented

commitsk
yearsk

/ commitsi
i=(torch,theano,tensorflow)

∑ / yearsi

Resume: It’s THE choice for research/startup/perspective

https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html

https://www.tensorflow.org/versions/r0.9/how_tos/image_retraining/index.html

https://www.tensorflow.org/versions/r0.11/how_tos/distributed/index.html
https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html
https://www.tensorflow.org/versions/r0.9/how_tos/image_retraining/index.html

7/20

Benefits:
- simpler automatic differentiation
- easier parallelisation
- differentiation of graph produces graph, so you can get 

high order derivatives for no cost(PROFIT!!!) 
You say how to symbolically compute the gradient for an op when you make a new op 
in tf - single method @ops.RegisterGradient("MyOP")

Symbolic computations

• You don’t actually compute. You just say how to compute
• You can think of it as meta programming
• Symbolic computation shows how to get symbolic (common, analytical) solution
• by substituting numerical values to vars, you obtain partial numerical solutions

Symbolic: c = a + b given a=…, b=…  
Numerical: 7 = 3 + 4

8/10

Symbolic computations. TF sample

(a-b)+ cos(x)

/gpu:0
+

/cpu:0
cos

/gpu:0
-

/cpu:0
x

/gpu:0
a

/gpu:0
b

import tensorflow as tf 
import numpy as np  
 
with tf.device('/cpu:0'):  
 x = tf.constant(np.ones((100,100))) 
 y = tf.cos(x) 
 
with tf.device('/gpu:0'):  
 a = tf.constant(np.zeros((100,100))) 
 b = tf.constant(np.ones((100,100))) 
 result = a-b+y 
 
tf_session = tf.Session(
 config=tf.ConfigProto(
 log_device_placement=True
)
) 
writer = tf.train.SummaryWriter(
 “/tmp/trainlogs2",
 tf_session.graph
)

then run 
tensorboard —-logdir=/tmp/trainlogs2 in shell,
go to the location suggested by tensorboard, 
`graphs` tab, click on each node/leaf, 
and check where it has been placed

Automatic differentiation
Automatic differentiation is based on chain rule:

http://colah.github.io/posts/2015-08-Backprop/

∂E(ƒ(w))
 ∂w

∂E(ƒ(w))
∂ƒ(w)

∂ƒ(w)
∂w

But f(w) not depend directly on w,
it may depend on g(w)…

In TF it’s much more convenient than in Torch or Theano

9/20

You can think of TF op = torch layer (in terms of automatic differentiation)

• Allows us to compute partial derivatives of objective function with respect to each 
free parameter in one pass.

• Efficient when # of objective functions is small

http://colah.github.io/posts/2015-08-Backprop/

Installation

Switch off UEFI safe boot (Linux, needed to installproprietary drivers)

Install Drivers(nvidia proprietary)(Linux)

Install CUDA
dpkg -i <your downloaded cuda.deb>; apt-get update; apt-get install cuda

Install CUDNN (need nvidia developer account, takes you up to 1 day to get)

install tensorflow

pip (trivial)

from sources(you’re getting the most recent fixes)

10/20

some video cards don’t use custom fan speed
nvidia-xconfig —cool-bits=4

then you can use cooling !
nvidia-settings -a [gpu:0]/GPUFanControlState=1 -a [fan:0]/GPUTargetFanSpeed=80

Usage tips

11/20

Debugging. Why?

Your bugs:
- tensor shape mismatch
- OOM
- wrong calculation graphs
- gradients (numerical, BPTT stability)
- visual debug: agent behaviour

Developers’ bugs:
- something works not as expected
- your code doesn’t work after update

There are no programs without bugs. Period.

12/20

You haven’t used ipdb

CORAL!!!

Debugging. Your bugs.
Shape mismatch, virtually all bugs:
import ipdb; ipdb.set_trace() # sometimes in catch 
ipdb> session.graph.get_tensor_by_name(‘node_path’).op.<press TAB in ipdb!!! ;)> 
ipdb> <tensor/op>.get_shape()

Check devices:
tf_session = tf.Session(config=tf.ConfigProto(log_device_placement=True))

Check/simplify graph(tensorboard):
writer = tf.train.SummaryWriter("/tmp/trainlogs", self.tf_session.graph)
$ tensorboard --logdir=/tmp/trainlogs

Use variable scope! easier code, easier debug!  
you can think of TF graph as a parallel program, accessible through tf.Session() object

OOM 
- check size of your variables or
- change memory usage strategy:

config = tf.ConfigProto() 
config.gpu_options.allow_growth = True 
self.tf_session = tf.Session(config=config)

Check gradients numerically

Check if gradients vanish/explode over time(especially for RNNs) 13/20

Debugging. Your bugs. Advanced.

- when tensorboard failed due to large/inconsistent/whatsoever graph

- or you’re too lazy/need a quick glance

https://github.com/oleksandr-khryplyvenko/tf-graph-visualiser

14/20

Assuming, that tf_session is a tf.Session() object.

ipdb> node_to_display = tf_session.graph.get_tensor_by_name('softmax:0')
ipdb> from nodedisplay import draw
ipdb> draw(node_to_display, tf_session, 'inception_v3_net')

After this, you'll get $HOME/inception_v3_net.svg file

https://github.com/oleksandr-khryplyvenko/tf-graph-visualiser

15/20

Debugging. Your bugs. Advanced.

Much bigger for real nets

Debugging. Artillery.

If you suspect bug in Master(unlikely but possible): 

$ cd tensorflow; git pull origin master
Then rebuild pip package & reinstall.
 
If something breaks, use google. Very often you just need to reinstall some package tf depends on.

If this hasn’t helped, try to solve/hotfix this problem on your own.
The code is pretty simple, up to platform specific prototypes.
Hasn’t helped? Post a bug. And rollback meanwhile, if possible.

16/20

Debugging. Advanced. RNN stability.

Goal: get and visualise gradients for BPTT

Theano:

https://groups.google.com/forum/?hl=en#!topic/theano-users/lTVpc4XD8C8
https://stackoverflow.com/questions/32553374/how-can-i-get-not-only-an-unrolled-for-k-steps-truncated-bptt-grad-in-theano-sc

17/20

https://groups.google.com/forum/?hl=en#!topic/theano-users/lTVpc4XD8C8
https://stackoverflow.com/questions/32553374/how-can-i-get-not-only-an-unrolled-for-k-steps-truncated-bptt-grad-in-theano-sc

18/20

Debugging. Advanced. RNN stability.

Surprise! Only predefined initialisers, 
matrix is glued

def _linear(args, output_size, bias, bias_start=0.0, scope=None):  
 """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable.”””

 shapes = [a.get_shape().as_list() for a in args] 
 for shape in shapes:
 total_arg_size += shape[1]

 with vs.variable_scope(scope or "Linear"): 
 matrix = vs.get_variable("Matrix", [total_arg_size, output_size]) 
 res = math_ops.matmul(array_ops.concat(1, args), matrix) 
 bias_term = vs.get_variable( 
 "Bias", [output_size], initializer=init_ops.constant_initializer(bias_start))
 
 return res + bias_term

class BasicRNNCell(RNNCell):
def __call__(self, inputs, state, scope=None): 
 """Most basic RNN: output = new_state = activation(W * input + U * state + B).""" 
 with vs.variable_scope(scope or type(self).__name__): # "BasicRNNCell" 
 output = self._activation(_linear([inputs, state], self._num_units, True))  
 return output, output

19/20

Don’t care. In TF, you can always take

Debugging. Advanced. RNN stability.

def separate_linear(args, argnames, output_size, bias, bias_start=0.0, scope=None, initializers=None):
 with tf.variable_scope(scope or "SeparateLinear"):  
 arg, shape, matrixname, initializer = args[0], shapes[0], argnames[0], initializers[0]  
 matrix = tf.get_variable(matrixname, [shape[1], output_size], initializer=initializer) 
 res = tf.matmul(arg, matrix) 
 
 for arg, shape, matrixname, initializer in zip(args, shapes, argnames, initializers)[1:]: 
 matrix = tf.get_variable(matrixname, [shape[1], output_size], initializer=initializer) 
 res += tf.matmul(arg, matrix) 
 
 if bias: 
 res += tf.get_variable(“Bias", [output_size], initializer=tf.constant_initializer(bias_start)) 
 
return res

class CustomInitializerBasicRNNCell(tf.nn.rnn_cell.BasicRNNCell): 
 def __call__(self, inputs, state, scope=None): 
 """Most basic RNN: output = new_state = tanh(W * input + U * state + B).""" 
 with tf.variable_scope(scope or type(self).__name__):  
 output = tf.tanh( 
 separate_linear.separate_linear( 
 [inputs, state], 
 ["Win", "Wrec"], 
 self._num_units, 
 True,  
 initializers=[ 
 tf.random_uniform_initializer(minval=-tf.sqrt…, maxval=), # Input matrix 
 tf.random_uniform_initializer() # Recurrent matrix 
] 
) 
) 
 return output, output

20/20

most recent100 steps backwards

© Artem Chernodub

Debugging. Advanced. RNN stability.
Now we have separate Win, Wrec, custom-initialized

