Session

Yuriy Guts
13 Oct 2018
12:00 -12:45
Stream A

Target Leakage in Machine Learning

Target leakage is one of the most difficult problems in developing real-world machine learning models. Leakage occurs when the training data gets contaminated with information that will not be known at prediction time. Additionally, there can be multiple sources of leakage, from data collection and feature engineering to partitioning and model validation. As a result, even experienced data scientists can inadvertently introduce leaks and become overly optimistic about the performance of the models they deploy. In this talk, we will look through real-life examples of data leakage at different stages of the data science project lifecycle, and discuss various countermeasures and best practices for model validation.

Presentation