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Building Video Recommendation system
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Implemented for constructing recommender systems INTRE(LT

Co-Occurence Collaborative Binary Logistic
Filtering Regression



Building a recommendation system: Co-occurrence INTRE(LT
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Building a recommendation system: Co-occurrence INTRE(LT
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Building a recommendation system: Collaborative filtering \L{EPRO

Collaborative Filtering



Building a recommendation system: Collaborative filtering \L{EPRO
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Building a recommendation system: Regression INTRE(LT
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Building a recommendation system: Regression
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Building a recommendation system: Regression INTRE(LT
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Comparing algorithms

Algorithm Pros Cons
e Fastlearning e |tis not possible to increase
e  Good speed of work the accuracy
Co-Occurence e  To train enough not very long e The "cold start" problem
history of views
@ e Fastlearning e ltis not possible to add information
. e  Using not only the fact of views, about movies or users
C.olla!ooratlve but also ratings e The "cold start" problem
Filtering > e |t predicts not only views, but also
ratings
o\ e e  Good accuracy for the long history e Long time training
Binary 22004l e The ability to increase the accuracy e  Low precision for short history
Logistic rod of the method by introducing
Regression S2,(ga4s predictors
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Recommendations: KPI INTRE[ZTH

Dynamic dataset Static dataset
(Users Activity Generator) | (Movielens.org dataset)

Co-occurrence 48 % 7,96 %

Collaborative filtering 27 % 4,6 %

Binary logistic regression 8 % 16 %
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Recommendations: KPl comparison INTRE[ZTH

Dynamic dataset Static dataset
(Users Activity Generator) | (Movielens.org dataset)

Co-occurrence 48 % 7,96 %
Collaborative filtering 27 % 4,6 %
Binary logistic regression 8 % 16 %
Top_Hot_Rate 17 % 1.04 %

Randomly 0.3 % 0.005 %
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Events generator

Traditional TV
Viewing Trends

When Are People
Watching?
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Generator: viewing time generation

User Parameters:
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Generator: viewing content generation \L{EPRO
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Ensemble of models in customer’s life cycle INTRE[ZTH

Client life cycle

A model based Model based on A film-personalized
on a segmentation of collaborative filtering model based on
films k-means etc regression
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A model based on A model built on Model based on film A user-personalized
socio- the co-occurrence segmentation + film- model based on
demographic personalized model regression
profile regression
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VOD OTT Reference Platform

Recommendation System
is only part of the bigger
project, but one of the most
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Questions INTRE[ZTH

We will be happy to answer your questions
info@intropro.com

ﬁ WEBSITE ‘_. COMPANY BLOG

intropro.com intropro.com/resources/blog

(‘ SUCCESS STORIES @ LINKEDIN

intropro.com/case-studies linkedin.com/company/intro-pro
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