Natural Errror Processing

Mariana Romanyshyn

Technical Lead, Sr. Computational Linguist Grammarly, Inc.

Contents

- 1. Define the problem
- 2. Classical methods: rules and ngrams
- 3. Machine Learning
- 4. Is there more?
- 5. Where do I get data?
- 6. How to evaluate the solution?

1. Define the problem

I like cooking my family and my pets.

Use commas. Don't be a psycho.

Some statistics

Non-natives make **1** mistake every **10** words.

Most popular errors:

- spelling
- preposition choice
- missing article
- missing or redundant punctuation
- word choice

Irony is when someone writes "Your an idiot".

Learn grammar. Insult properly.

Tasks:

- DetectionCorrection

Tasks:

DetectionCorrection

He is just want us to make a good decision. Today my plan is study the system. John is now be able to donate money. It is say that their house is sold.

is + VB => ?

$\frac{1}{1}$ is just wants	~	×
is study → is to study	~	×
is now be → is now	~	×
is say → is said	~	×

2. Classical methods: rules and ngrams

Basic Text Pre-processing

- Language identification
- Paragraph splitting
- Sentence splitting
- Tokenization
- POS tagging

2.1. Tokens and parts of speech

- MD ? RB {of->have} VBN
 - "could {of->have} done"
 - "could n't {of->have} done"
- CD "[ap]\\.?m\\.?" (time-expression)
 - 10 am in the morning
 - 7:30 p.m. in the evening
- "the" {"most" JJS->JJS|most JJ}
 - o the {most nicest->nicest}
 - the {most beautifullest->beautiful}

2.2. Dictionaries

- (Dr|Mr|Mrs|...) |.| (not |.|)
 "Dr->Dr. Stevenson"
- over-regularized verb: get infinitive and transform it properly
 - "I {eated->ate} your cookie"
 - "I have {eated->eaten} your cookie"
 - slang
 - "Do you {wanna->want to} watch TV?"
 - "I really {wanna->want} this dress."
 - "I really {wanna->want an} apple."

2.3. Ngrams (1)

Double article

- Easy case:
 - {An a->An} apple a day keeps the doctor away.
 - Please book {a the->the} following flights for me.
- Multiple choice:
 - Give me {the a->the/a} chance to solve the problem.
 - They all have access to {a the->the} internet.
 - I slipped {the a->a} couple magazines under the bed.
- Misspellings:
 - Jane, these {a the->are the} 3 pictures.
 - {A the->At the} beginning, we were together.
 - Hunter is a freshmen {an a->and a} basketball player.

2.3. Ngrams (2)

• Jane, these {a the->are the} 3 pictures.

- ngram("these and the 3 pictures") = 100
- ngram("these are the 3 pictures") = 5,000
- ngram("these as the 3 pictures") = 50
- ngram("these at the 3 pictures") = 30

• {A the->At the} beginning, we were together.

- ngram("<S> And the beginning ,") = 100
- ngram("<S> Are the beginning ,") = 0
- ngram("<S> As the beginning ,") = 60
- o ngram("<S> At the beginning ,") = 80,000

2.4. Syntactic trees (1)

Barry, the guy I met yesterday, who has three kids, **{live->lives}** in Brooklyn.

2.4. Syntactic trees (2)

Barry, the guy I met yesterday, who has three kids, **{live->lives}** in Brooklyn.

- Too far for POS tags
 - NNP, DT NN PRP VBD, WP VBZ CD NNS, VBP
- Too far for ngrams
 - ngrams("kids , live in Brooklyn") = 0
 - o ngrams("kids , lives in Brooklyn") = 0

2.4. Syntactic trees (3)

Barry, the guy I met yesterday, who has three kids, **{live->lives}** in Brooklyn.

2.4. Syntactic trees (4)

- + Defining who you **are did** good to you.
- The videos are did quite well.

2.4. Syntactic trees (5)

- + Defining who you are did good to you.
- The videos are did quite well.

Statistics repeated

Non-natives make **1** mistake every **10** words.

Most popular errors:

- spelling
- preposition choice
- missing article
- missing or redundant punctuation
- word choice

3. Machine Learning

3.1. What we need (1)

Two things needed:

- 1. A machine learning classifier (MaxEnt, SVM, Naive Bayes, Random Forest, Average Perceptron, etc.)
- 2. Data with labels for each training example

3.1. What we need (2)

Two things needed:

- 1. A machine learning classifier (MaxEnt, SVM, Naive Bayes, Random Forest, Average Perceptron, etc.)
- 2. Data with labels for each training example

What features to use? -_(ツ)_/-

3.2. Preposition choice

Preposition choice: tricky cases

• Multiple corrections

- The economic globalization is of the most concern {by->to/of/for} each nation.
- We have problems {such as/like/with} rapid development.

• Correct but rare usage

• I rely mostly {upon->on} my instinctive feeling.

• Lexical features

- \circ word
- left/right context
- Grammatical features
 - part of speech
 - dependency relations
 - constituency spans
- Ngrams
 - unigrams, bigrams, three-grams...

• More ngrams

- POS ngrams
 - ngrams("decided_VBD for_IN going_VBG to_IN")
 - ngrams("decided_VBD on_IN going_VBG to_IN")
- Wildcard ngrams
 - ngrams("decided for VBG to")
 - ngrams("decided on VBG to")

• More ngrams

- POS ngrams
 - ngrams("decided_VBD for_IN going_VBG to_IN")
 ngrams("decided_VBD on_IN going_VBG to_IN")
- Wildcard ngrams
 - ngrams("decided for VBG to")
 - ngrams("decided on VBG to")

• Semantic features

- \circ WordNet
- VerbNet
- semantic role labelling

• Semantic features

- \circ WordNet
- \circ VerbNet
- semantic role labelling
- Linguistic resources
 - governing dictionaries
 - word-form dictionaries

• Semantic features

- \circ WordNet
- \circ VerbNet
- semantic role labelling

• Linguistic resources

- governing dictionaries
- word-form dictionaries

• Sources

- \circ L1 of the writer
- \circ genre of the writing

3.3. Overly complex words

Sorry for using big words and aggrandizing your inferiority complex.

Complex words: tricky cases

- Complex word in complex sentences
 - The researchers used optical coherence tomography to elucidate the impact of fixation on retinal laser pathology.
- Compound words
 - Snow, raindrops, hail, or sleet that fall from above can be collected in hydrosphere alleys.

Complex words: features

• Lexical features

- \circ word
- left/right context
- Grammatical features
 - part of speech
 - dependency relations
 - constituency spans
- Ngrams
 - unigrams, bigrams, three-grams...

Complex words: features

• More Ngrams

- character ngrams
 - procrastinate: procr, rocra, ocras, crast, rasti, astin...
• More Ngrams

- character ngrams
 - procrastinate: *procr, rocra, ocras, crast, rasti, astin*...
- Spelling of the word
 - Is the word capitalized?
 - \circ Is the word hyphenated?

• More Ngrams

- character ngrams
 - procrastinate: *procr, rocra, ocras, crast, rasti, astin*...

• Spelling of the word

- Is the word capitalized?
- Is the word hyphenated?

• Morphology

- Is the word compound?
- Which affixes are common for complex words?

• Number of senses

Word	Number of senses in WordNet
report	7 n + 6 v
cat	8 n + 2 v
elucidate	2 v
procrastinate	2 v
moribund	2 a

• More Features

- word length
- ratio of vowels vs consonants
- number of syllables
- word position in the sentence
- depth of the word in the dependency tree of the sentence
- degree of concreteness/abstractness using MRC
 Psycholinguistic Database...

3.4. Word representations (1)

• One-hot vectors: the word in the vocabulary

• Distributional vectors: the context of the word

3.4. Word representations (2)

- Word embeddings
 - start from a random vector for each word
 - observe the target word and its contexts
 - for each context, update the word's vector *

*...so that the contexts predict the word better

For each word find its embedding such that similar words have close embeddings

4. Is there more?

4.1. Language Modelling

Shows the probability of a sentence or phrase in the language. Usually trained on good genre-balanced texts.

н

Used:

- for error detection
- for error correction
- as a feature for ML
- as a filter

	at	0.1
	by	0.2
	by for	0.1
e will take ou	ur place in the line.	→ 0.3
	from	0.0
	to	0.1
	with	0.1

4.2. Grammaticality Classifier

Shows the probability of an error in the sentence. Trained on error-labelled sentences.

Used for:

- selecting sentences for error correction
- filtering out false positives

4.3. Machine Translation

Two types:

- Noisy channel
 - translation from "bad English" to "good English"
- Round-trip
 - translation from English to another language and then back to English

4.4. Neural Error Correction (2016)

5. Where do I get data?

The data says we need more data.

5.1. Free Data

• Open Data

- Wikipedia
- Wiktionary
- Common Crawl
- Specific language resources

Artificial Data

- take "correct" corpora
- plant errors

5.2. Paid Data

• Licensed data

- for error correction: NUCLE, Lang-8, CLC, CLEC, ICLE
- Annotated data
 - pricey: Appen
 - cheaper: Amazon Mechanical Turk, CrowdFlower

6. How to evaluate the solution?

6.1. Traditional Formulas

 $Precision = \frac{TPs}{TPs + FPs} \qquad F - score = \frac{Precision * Recall}{Precision + Recall}$

 $Recall = \frac{TPs}{TPs + FNs} \qquad Accuracy = \frac{TPs + TNs}{TPs + TNs + FPs + FNs}$

6.2. Preposition correction (2014)

Team	Description	Recall, %
САМВ	Rule-based \rightarrow LM ranking \rightarrow SMT \rightarrow LM ranking	38.63
NTHU	Language modelling.	20.42
AMU	Phrase-based MT with augmented LMs and specific features.	18.41
CUUI	A combination of averaged perceptron, naive Bayes, and pattern-based learning.	18.22
UMC	Factored MT model using modified POS tags and morphology as features.	16.98
SJTU	Rule-based error categorization used to train a Maximum Entropy model.	8.95
POST	Detection via n-grams; correction via LM alternatives. Post-processing with rules.	2.25

6.3. Quality on NUCLE (2014)

Team	Description	F-score, %
CAMB	Rule-based \rightarrow LM ranking \rightarrow SMT \rightarrow LM ranking	37.33
CUUI	A combination of averaged perceptron, naive Bayes, and pattern-based learning. Check-specific features.	36.79
AMU	Phrase-based MT with augmented LMs and specific features.	35.01
POST	Detection via n-grams; correction via LM alternatives. Post-processing with rules.	30.88
NTHU	Language modelling, conditional random field model, rules, MT for different checks.	29.92
UMC	Factored MT model using modified POS tags and morphology as features.	25.37
SJTU	Rule-based error categorization used to train a Maximum Entropy model.	15.19

6.3. Quality on NUCLE (2014)

Team	Description	F-score, %
NEC	Attention-based encoder-decoder RNN and a 5-gram LM. (2016)	40.56
САМВ	Rule-based \rightarrow LM ranking \rightarrow SMT \rightarrow LM ranking	37.33
CUUI	A combination of averaged perceptron, naive Bayes, and pattern-based learning. Check-specific features.	36.79
AMU	Phrase-based MT with augmented LMs and specific features.	35.01
POST	Detection via n-grams; correction via LM alternatives. Post-processing with rules.	30.88
NTHU	Language modelling, conditional random field model, rules, MT for different checks.	29.92
UMC	Factored MT model using modified POS tags and morphology as features.	25.37
SJTU	Rule-based error categorization used to train a Maximum Entropy model.	15.19

Any kwestions?

Mariana Romanyshyn mariana.romanyshyn@grammarly.com mariana.scorp@gmail.com